AI Article Synopsis

  • Sinapic acid, a dietary compound with antioxidant and anti-inflammatory properties, has been studied for its interactions with proteins and DNA, highlighting its potential in pharmacology.
  • This research investigates the binding interaction between sinapic acid and calf thymus DNA (ct-DNA) using various spectroscopy and theoretical methods, revealing that sinapic acid binds to the minor groove of ct-DNA through hydrogen bonding.
  • Findings include evidence that sinapic acid can protect DNA from UVB-induced damage, suggesting its therapeutic potential in developing new drugs and methodologies for drug-DNA interaction studies.

Article Abstract

3,5-Dimethoxy-4-hydroxycinnamic acid commonly known as Sinapic acid is a well-known derivative of hydroxycinnamic acids, is commonly present in human diet. Due to its wide variety of pharmacological activities like antioxidant, antimicrobial, anti-inflammatory, anticancer, and anti-anxiety, it has attracted much attention for the researchers. In our previous published work we have already analyzed the interaction between sinapic acid (SA) with a model transport protein. In this work our aim is to demonstrate a detailed investigation of the binding interaction between sinapic acid with another carrier of genetic information in a living cell, the DNA. Here we have used calf thymus DNA (ct-DNA) as a model. The binding characteristic of SA with ct-DNA was investigated by different spectroscopic and theoretical tools. The spectroscopic investigation revealed that quenching of intrinsic fluorescence of SA by ct-DNA occurs through dynamic quenching mechanism. The thermodynamic parameters established the involvement of hydrogen bonding and weak van der Waals forces in the interaction. Further, the circular dichroism, competitive binding experiment with ethidium bromide and potassium iodide quenching experiment suggested that SA possibly binds to the groove position of the ct-DNA. Finally, molecular docking analysis established the SA binds to minor groove position of ct-DNA in G-C rich region through hydrogen bonding interaction. Additionally, gel electrophoresis analysis has been performed to determine the protective efficacy of SA against UVB induced DNA damage and 50 μM of SA was found to protect the DNA from UVB induced damage. We hope that our study could provide the validation of SA on behalf of therapeutics and development of next generation therapeutic drug as well as designing new efficient drug molecule and methodology for the interaction study of the drug with DNA.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.saa.2020.118936DOI Listing

Publication Analysis

Top Keywords

sinapic acid
12
35-dimethoxy-4-hydroxycinnamic acid
8
calf thymus
8
thymus dna
8
interaction sinapic
8
hydrogen bonding
8
groove position
8
position ct-dna
8
uvb induced
8
interaction
6

Similar Publications

The Bioprotective Effects of Marigold Tea Polyphenols on Obesity and Oxidative Stress Biomarkers in High-Fat-Sugar Diet-Fed Rats.

Cardiovasc Ther

January 2025

Centre for Natural Products Discovery, School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, James Parsons Building, Byrom Street, Liverpool L3 3AF, UK.

The research is aimed at exploring the potential of marigold petal tea (MPT), rich in polyphenol contents, against oxidative stress and obesity in a rat model following a high-fat-sugar diet (HFSD). The MPT was prepared through the customary method of decoction and was subjected to analysis for its polyphenol composition using reversed-phase high-performance liquid chromatography (RP-HPLC). Two specific doses of MPT, namely, 250 and 500 mg/kg body weight (BW), were chosen for the study-referred to as MPT-250 and MPT-500, respectively.

View Article and Find Full Text PDF

Anti-aflatoxin potential of phenolic compounds from common beans (Phaseolus vulgaris L.).

Food Chem

December 2024

Centro para Investigaciones en Granos y Semillas, Universidad de Costa Rica, 11501 San Pedro, San José, Costa Rica. Electronic address:

Common beans (Phaseolus vulgaris L.) are widely consumed legumes in Latin America and Africa, valued for their nutritional compounds and antioxidants. Their high polyphenol content contributes to the antioxidant properties, with bioactive compounds showing antifungal and antimycotoxin effects.

View Article and Find Full Text PDF

Objective: To detect phenolic acid compounds in various fruits and explore the differences in phenolic acids among different types of fruits.

Methods: The collected 75 types of fruits were classified into 6 categories: citrus、melon、drupe、berry、tropical fruit and pome fruits. The phenolic acid compounds were detected by high performance liquid chromatography-mass spectrometry.

View Article and Find Full Text PDF

This study evaluates the protective effects of sinapic acid (SA), a polyphenolic compound with diverse biological activities, against ethanol-induced gastric ulcers in rats. A gastric ulcer model was established using ethanol (ETH), and the experimental groups received either omeprazole (OMEP, 20 mg/kg) or SA at doses of 20 mg/kg and 40 mg/kg via oral gavage for 14 days. Biochemical markers, including total antioxidant status (TAS), total oxidant status (TOS), oxidative stress index (OSI), malondialdehyde (MDA), and myeloperoxidase (MPO) activity, were assessed alongside proinflammatory cytokines (tumor necrosis factor-alpha (TNF-α), interleukin-1 beta (IL-1β), and IL-6) using ELISA.

View Article and Find Full Text PDF

Honey can benefit from non-thermal processing techniques such as high-pressure processing (HPP) to improve its quality and bioactivity. This study investigated the impact of HPP (600 MPa for 5, 10, and 15 min) on honey's quality, including the levels of hydroxymethylfurfural (HMF), antioxidant activity, total phenolic content (TPC), and phenolic profile. HPP treatment did not significantly affect HMF or TPC levels but led to selective changes in the phenolic profile.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!