Pre-electrochemical treatment combined with fixed bed biofilm reactor for pyridine wastewater treatment: From performance to microbial community analysis.

Bioresour Technol

Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou 310014, China; College of Environment, Zhejiang University of Technology, Hangzhou 310014, China. Electronic address:

Published: January 2021

To overcome the high biotoxicity and poor biodegradability of pyridine and its derivatives, a pre-electrochemical treatment combined with fixed bed biofilm reactor (EC-FBBR) was designed for multi-component stream including pyridine (Pyr), 3-cyanopyridine (3-CNPyr), and 3-chloropyridine (3-ClPyr). The EC-FBBR system could simultaneously degrade these pollutants with a mineralization efficiency of 90%, especially for the persistent 3-ClPyr. Specifically, the EC could partially degrade all pollutants, and allow them to be completely destructed in FBBR. With EC off, Rhodococcus (35.5%) became the most abundant genus in biofilm, probably due to its high tolerance to 3-ClPyr. With EC on, 3-ClPyr was reduced to an acceptable level, thus Paracoccus (21.1%) outcompeted among interspecies competition with Rhodococcus and became the dominant genus. Paracoccus was considered to participate in the subsequent degradation for the residual 3-ClPyr, and led to the complete destruction for all pollutants. This study proposed promising combination for effective treatment of multi-component pyridine wastewater.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.biortech.2020.124110DOI Listing

Publication Analysis

Top Keywords

pre-electrochemical treatment
8
treatment combined
8
combined fixed
8
fixed bed
8
bed biofilm
8
biofilm reactor
8
pyridine wastewater
8
degrade pollutants
8
3-clpyr
5
pyridine
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!