T cell costimulation is mediated by the interaction of a number of receptors and ligands present on the surface of the T cell and antigen-presenting cell, respectively. Stimulatory or inhibitory signals from these receptor-ligand interactions work in tandem to preserve immune homeostasis. BTNL2 is a type-1 membrane protein that provides inhibitory signal to T cells and plays an important role in several inflammatory and autoimmune diseases. Therefore, manipulation of the molecular interaction of BTNL2 with its putative receptor could provide strategies to restore immune homeostasis in these diseases. Hence, it is imperative to study the structural characteristics of this molecule, which will provide important insights into its function as well. In this study, the membrane-distal ectodomain of murine BTNL2 was expressed in bacteria as inclusion bodies, refolded in vitro and purified for functional and structural characterization. The domain is monomeric in solution as demonstrated by size-exclusion chromatography and analytical ultracentrifugation, and also binds to its putative receptor on naïve B cells and activated T cell subsets. Importantly, for the first time, we report the structure of BTNL2 as determined by solution NMR spectroscopy and also the picosecond-nanosecond timescale backbone dynamics of this domain. The N-terminal ectodomain of BTNL2, which was able to inhibit T cell function as well, exhibits distinctive structural features. The N-terminal ectodomain of BTNL2 has a significantly reduced surface area in the front sheet due to the non-canonical conformation of the CC' loop, which provides important insights into the recognition of its presently unknown binding partner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7642044 | PMC |
http://dx.doi.org/10.1016/j.jmb.2020.09.013 | DOI Listing |
Cancers (Basel)
January 2025
Division of Hematology Oncology, Akron Children's Hospital, One Perkins Square, Akron, OH 44308, USA.
Inflammation plays a crucial role in wound healing and the host immune response following pathogenic invasion. However, unresolved chronic inflammation can result in tissue fibrosis and genetic alterations that contribute to the pathogenesis of human diseases such as cancer. Recent scientific advancements exploring the underlying mechanisms of malignant cellular transformations and cancer progression have exposed significant disparities between pediatric and adult-onset cancers.
View Article and Find Full Text PDFCancers (Basel)
December 2024
Clinical and Health Sciences, University of South Australia, Adelaide, SA 5000, Australia.
Prostate cancer remains a significant global health concern, with over 1.4 million new cases diagnosed and more than 330,000 deaths each year. The primary clinical challenge that contributes to poor patient outcomes involves the failure to accurately predict and treat at the onset of metastasis, which remains an incurable stage of the disease.
View Article and Find Full Text PDFNutrients
December 2024
Department of Immunopathology, Faculty of Medicine, Medical University of Lodz, Zeligowskiego 7/9, 90-752 Lodz, Poland.
Asthma (a chronic inflammatory disease of the airways) is characterized by a variable course, response to treatment, and prognosis. Its incidence has increased significantly in recent decades. Unfortunately, modern lifestyle and environmental factors contribute to the further increase in the incidence of this disease.
View Article and Find Full Text PDFFoods
January 2025
College of Food Science and Engineering, Jilin Agricultural University, Changchun 130118, China.
Background: Ulcerative colitis (UC) is a chronic intestinal disease of growing global concern. Bacteria associated with fermented food or probiotics regulate immune and inflammatory responses, playing a key role in intestinal immune homeostasis.
Results: Five probiotics with relatively good antioxidant effects, namely H6, QC9, E7, D1, and Q13, were screened out from 30 strains of probiotics through in vitro antioxidant assays.
Int J Mol Sci
January 2025
Department of Pathology, University of Veterinary Medicine Hannover, 30559 Hannover, Germany.
Respiratory viral infections continue to cause pandemic and epidemic outbreaks in humans and animals. Under steady-state conditions, alveolar macrophages (AlvMϕ) fulfill a multitude of tasks in order to maintain tissue homeostasis. Due to their anatomic localization within the deep lung, AlvMϕ are prone to detect and react to inhaled viruses and thus play a role in the early pathogenesis of several respiratory viral infections.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!