Background: Immune checkpoint inhibitor therapy has revolutionized lung adenocarcinoma therapy. Treatment with antibodies against the immune checkpoint molecules programmed death-1 (PD-1) and programmed death-ligand 1 (PD-L1) can induce a durable response in a subset of patients. Immunohistochemistry characterization of tumor PD-L1 expression using either a histopathology specimen or a cytopathology specimen has been shown to correlate with treatment response. However, the current practice relies on pathologists' visual estimation of tumor PD-L1 staining, which can be variable in certain conditions. Highlighting tumor cells via double immunostaining with PD-L1 and thyroid transcription factor-1 (TTF-1) may improve estimation accuracy.
Methods: We performed PD-L1 single staining and PD-L1/TTF-1 double staining in 42 pairs of cytopathology and histopathology specimens from lung adenocarcinoma patients. An experienced pathologist visually estimated PD-L1 expression in each case and placed tumor PD-L1 expression into 1 of 3 categories: <1%, 1%-49%, or ≥50%. A medical technologist also performed estimations of the same cases based on a count of 200 tumor cells, and the results were compared.
Results: PD-L1/TTF-1 double immunohistochemistry could better identify the PD-L1-positive tumor cells in cytopathology specimens compared with PD-L1 single staining. The concordance of PD-L1 expression categorization between the pathologist's visual estimation and the medical technologist's counting was increased by double staining in cytopathology specimens (Cohen's weighted kappa: single stain, 0.784; double stain, 0.880). Double staining reduced possible error in the pathologist's visual estimation of PD-L1 expression from 9.5% to 4.8%. The benefit was not observed in histopathology specimens.
Conclusion: A simple PD-L1/TTF-1 double immunohistochemistry technique can be applied successfully to cytopathology specimens in better identifying patients who can potentially benefit from immune checkpoint blockade treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/cncy.22359 | DOI Listing |
ACS Nano
January 2025
Wuya Faculty of Innovation, Shenyang Pharmaceutical University, Shenyang 110016, China.
Antidrug antibodies (ADAs) against biologics present a major challenge for sustained biotherapy, including enzyme replacement therapies and adeno-associated virus (AAV) gene therapies. These antibodies arise from undesirable immune responses, leading to altered pharmacokinetics, reduced efficacy, and adverse reactions. In this study, we introduced a rationally designed lipid-rapamycin (Rapa)-based nanovaccine to restore immune tolerance to biologics and overcome drug resistance.
View Article and Find Full Text PDFJ Med Chem
January 2025
Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, P. R. China.
Pyroptosis, an excellent form of immunogenic cell death that can effectively activate antitumor immune responses, is attracting considerable interest as a promising approach for cancer immunotherapy. Immunogenic pyroptosis can recruit and stimulate dendritic cells to provoke further activation and tumor infiltration of T cells by releasing danger-associated molecular patterns, thus improving the tumor response to PD-1/PD-L1 checkpoint blockade immunotherapy. Here, we report the discovery of a bifunctional photosensitizer Nile Violet that can simultaneously trigger caspase-3/GSDME-mediated immunogenic pyroptosis and PD-L1 downregulation for cancer photoimmunotherapy.
View Article and Find Full Text PDFJ Med Chem
January 2025
Guangdong Provincial Key Laboratory of New Drug Screening, NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China.
Based on our previous work, a series of imidazole-based small molecules were designed and synthesized as HDAC3 inhibitors. Among them, compound showed selective HDAC3 inhibition activity with an IC of 53 nM (SI = 75 for HDAC3 over HDAC1). Further studies revealed that could dose-dependently induce the expression of PD-L1 in MC38 cells by activating the PD-L1 transcription.
View Article and Find Full Text PDFBrain Spine
December 2024
Division of Neurosurgery, Department of Clinical Neurosciences, University Hospital of Lausanne and University of Lausanne, Lausanne, Switzerland.
Introduction: and research question: Prognostic factors to predict the behavior of pituitary neuroendocrine tumors (PitNET) are scarce. PD-L1 expression was associated with prognosis in other neuroendocrine neoplasms and we analyzed PD-L1 expression in PitNET, according to the 2022 WHO classification.
Material And Methods: A retrospective analysis was performed.
Curr Cancer Drug Targets
January 2025
Department of Respiratory Medicine, The Affiliated Nanjing Brain Hospital of Nanjing Medical University, Nanjing, China.
Background: Non-small cell lung cancer (NSCLC) predominantly affects older adults; these patients have significant comorbidities, making them unsuitable for chemotherapy. This study aimed to evaluate the efficacy and safety of immune checkpoint inhibitor (ICI) along with anlotinib combination therapy as a first-line treatment in older NSCLC patients with programmed death ligand-1(PD-L1) expression<50%.
Methods: We conducted a retrospective observational study including 73 patients with advanced NSCLC treated at Nanjing Brain Hospital.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!