A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Asperolide A prevents bone metastatic breast cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling pathway. | LitMetric

Asperolide A prevents bone metastatic breast cancer via the PI3K/AKT/mTOR/c-Fos/NFATc1 signaling pathway.

Cancer Med

Department of Biochemistry and Molecular Biology, College of Basic Medical, Navy Medical University, Shanghai, China.

Published: November 2020

Background: Breast cancer is the leading cause of death among women with malignant tumors worldwide. Bone metastasis is the main factor affecting the prognosis of breast cancer. Therefore, both antitumor and anti-breast-cancer-induced osteolysis agents are urgently needed.

Methods: We examined the effect of Asperolide A (AA), a marine-derived agent, on osteolysis and RANKL-induced phosphoinositide 3-kinase (PI3K)/AKT/mTOR/c-FOS/nuclear factor-activated T cell 1 (NFATc1) pathway activation, F-actin ring formation, and reactive oxygen species (ROS) generation in vitro. We evaluated AA effect on breast cancer MDA-MB-231 and MDA-MB-436 cells in vitro through CCK8 assay, wound healing assay, transwell assay, Annexin V-FITC/PI staining for cell apoptosis, and cell cycle assay. Furthermore, we assessed the effect of AA in vivo using a breast cancer-induced bone osteolysis nude mouse model, followed by micro-computed tomography, tartrate-resistant acid phosphatase staining, and hematoxylin and eosin staining.

Results: Asperolide A inhibited osteoclast formation and differentiation, bone resorption, F-actin belt formation, ROS activity, and osteoclast-specific gene and protein expressions and prevented PI3K/AKT/mTOR/c-FOS/NFATc1 signaling activation in a dose-dependent manner in vitro. AA also inhibited breast cancer growth and breast cancer-induced bone osteolysis by reducing osteoclast formation and function and inactivated PI3K/AKT/mTOR signaling in vivo.

Conclusions: Our study demonstrated that AA suppressed bone metastatic breast cancer. These findings indicate AA as a potential, novel curative drug candidate for patients with bone metastatic breast cancer.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7643645PMC
http://dx.doi.org/10.1002/cam4.3432DOI Listing

Publication Analysis

Top Keywords

breast cancer
28
bone metastatic
12
metastatic breast
12
breast
9
pi3k/akt/mtor/c-fos/nfatc1 signaling
8
breast cancer-induced
8
cancer-induced bone
8
bone osteolysis
8
osteoclast formation
8
bone
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!