Ice storms are a type of extreme winter weather event common to north temperate and boreal forests worldwide. Recent climate modelling studies suggest that these storms may become more frequent and severe under a changing climate. Compared to other types of storm events, relatively little is known about the direct and indirect impacts of these storms on forests, as naturally occurring ice storms are inherently difficult to study. Here we describe a novel experimental approach used to create a suite of ice storms in a mature hardwood forest in New Hampshire, USA. The experiment included five ice storm intensities (0, 6.4, 12.7 and 19.1 mm radial ice accretion) applied in a single year, and one ice storm intensity (12.7 mm) applied in two consecutive years. Results demonstrate the feasibility of this approach for creating experimental ice storms, quantify the increase in fine and coarse woody debris mass and nutrients transferred from the forest canopy to the soil under the different icing conditions, and show an increase in the damage to the forest canopy with increasing icing that evolves over time. In this forest, little damage occurred below 6.4 mm radial ice accretion, moderate damage occurred with up to 12.7 mm of accretion, and significant branch breakage and canopy damage occurred with 19.1 mm of ice. The icing in consecutive years demonstrated an interactive effect of ice storm frequency and severity such that some branches damaged in the first year of icing appeared to remain in the canopy and then fall to the ground in the second year of icing. These results have implications for National Weather Service ice storm warning levels, as they provide a quantitative assessment of ice-load related inputs of forest debris that will be useful to municipalities creating response plans for current and future ice storms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7518631 | PMC |
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239619 | PLOS |
Nature
December 2024
National Oceanography Centre, Southampton, UK.
Recent Antarctic sea-ice decline is a substantial source of concern, notably the record low in 2023 (ref. ). Progress has been made towards establishing the causes of ice loss but uncertainty remains about its consequences for ocean-atmosphere interaction.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
December 2024
Alfred Wegener Institute Helmholtz-Centre for Polar and Marine Research, Permafrost Section, Potsdam 14401, Germany.
Arctic shorelines are vulnerable to climate change impacts as sea level rises, permafrost thaws, storms intensify, and sea ice thins. Seventy-five years of aerial and satellite observations have established coastal erosion as an increasing Arctic hazard. However, other hazards at play-for instance, the cumulative impact that sea-level rise and permafrost thaw subsidence will have on permafrost shorelines-have received less attention, preventing assessments of these processes' impacts compared to and combined with coastal erosion.
View Article and Find Full Text PDFJACC Clin Electrophysiol
December 2024
Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio, USA. Electronic address:
Commun Biol
November 2024
School of Earth Sciences, Ohio State University, Columbus, OH, USA.
Extreme weather events are becoming more frequent, with poorly known consequences for wildlife. In December 2021, an atmospheric river brought record-shattering amounts of rain and snow to interior Alaska, creating conditions expected to cause mass mortality in grazing ungulate populations that need to access ground forage. We characterized snowpack conditions following the storm and used a 36-year monitoring dataset to quantify impacts on caribou (Rangifer tarandus) and their primary predator, wolves (Canis lupus).
View Article and Find Full Text PDFNat Commun
November 2024
Alfred Jahn Cold Regions Research Centre, Institute of Geography and Regional Development, University of Wrocław, Wroclaw, Poland.
The Arctic is rapidly losing its sea ice cover while the region warms faster than anywhere else on Earth. As larger areas become ice-free for longer, winds strengthen and interact more with open waters. Ensuing higher waves also increase coastal erosion and flooding, threatening communities and releasing permafrost carbon.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!