Focused ultrasound (FUS) exposure of micro-bubble (MB) contrast agents can transiently increase microvascular permeability allowing anticancer drugs to extravasate into a targeted tumor tissue. Either fixed or mechanically steered in space, most studies to date have used a single element focused transducer to deliver the ultrasound (US) energy. The goal of this study was to investigate various multi-FUS strategies implemented on a programmable US scanner (Vantage 256, Verasonics Inc.) equipped with a linear array for image guidance and a 128-element therapy transducer (HIFUPlex-06, Sonic Concepts). The multi-FUS strategies include multi-FUS with sequential excitation (multi-FUS-SE) and multi-FUS with temporal sequential excitation (multi-FUS-TSE) and were compared to single-FUS and sham treatment. This study was performed using athymic mice implanted with breast cancer cells ( N = 20 ). FUS therapy experiments were performed for 10 min after a solution containing MBs (Definity, Lantheus Medical Imaging Inc.) and near-infrared (NIR, surrogate drug) dye were injected via the tail vein. The fluorescent signal was monitored using an in vivo optical imaging system (Pearl Trilogy, LI-COR) to quantify intratumoral dye accumulation at baseline and again at 0.1, 24, and 48 h after receiving US therapy. Animals were then euthanized for ex vivo dye extraction analysis. At 48 h, fluorescent tracer accumulation within the tumor space for the multi-FUS-TSE therapy group animals was found to be 67.3%, 50.3%, and 36.2% higher when compared to sham, single-FUS, and multi-FUS-SE therapy group measures, respectively. Also, dye extraction and fluorescence measurements from excised tumor tissue found increases of 243.2%, 163.1%, and 68.1% for the multi-FUS-TSE group compared to sham, single-FUS, and multi-FUS-SE therapy group measures, respectively. In summary, experimental results revealed that for a multi-FUS sequence, increased microvascular permeability was considerably influenced by both the spatial and temporal aspects of the applied US therapy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8034541PMC
http://dx.doi.org/10.1109/TUFFC.2020.3026697DOI Listing

Publication Analysis

Top Keywords

therapy group
12
therapy
8
microvascular permeability
8
tumor tissue
8
multi-fus strategies
8
sequential excitation
8
dye extraction
8
compared sham
8
sham single-fus
8
single-fus multi-fus-se
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!