Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
We propose a diagnostic for finite temperature topological order using "topological entanglement negativity," the long-range component of a mixed-state entanglement measure. As a demonstration, we study the toric code model in d spatial dimensions for d=2,3,4, and find that when topological order survives thermal fluctuations, it possesses a nonzero topological entanglement negativity, whose value is equal to the topological entanglement entropy at zero temperature. Furthermore, we show that the Gibbs state of 2D and 3D toric code at any nonzero temperature, and that of 4D toric code above a certain critical temperature, can be expressed as a convex combination of short-range entangled pure states, consistent with the absence of topological order.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1103/PhysRevLett.125.116801 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!