Small sugars are known to stabilize biological membranes under extreme conditions of freezing and desiccation. The proposed mechanisms of stabilization suggest membrane-sugar interactions to be either attractive or repulsive. To obtain new insight into the problem, we use a recently developed low-frequency Raman scattering approach which allows detecting membrane mechanical vibrations. For model membranes of palmitoyl-oleoyl-glycero-phosphocholine (POPC) hydrated in aqueous sucrose and trehalose solutions, we studied the Raman peak between 12 and 15 cm that is attributed to an eigenmode of the normal mechanical vibrations of a lipid monolayer. For both sugars, similar results were obtained. With an increase in sugar concentration in solution, the frequency position of the peak was found to decrease by ∼13% which was interpreted as a consequence of the membrane thickening due sugar monolayer adsorption on the membrane surface. The concentration dependence of the peak frequency position was satisfactorily described by a Langmuir monolayer adsorption model. It is concluded that, at small sugar concentrations (less than 0.2 M), the membrane-sugar interactions are attractive, while at higher concentrations (more than 0.4 M) the attraction disappears. The data obtained show that one sugar molecule on the surface interacts with approximately 3-4 polar lipid heads.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.langmuir.0c02458 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!