SFPhe, -pentafluorosulfanyl phenylalanine, is an unnatural amino acid with extreme physicochemical properties, which is stable in physiological conditions. Here we present newly developed aminoacyl-tRNA synthetases that enable genetic encoding of SFPhe for site-specific incorporation into proteins in high yields. Owing to the SF moiety's dichotomy of strong polarity and high hydrophobicity, the unnatural amino acid forms specific and strong interactions in proteins. The potential of SFPhe in protein research is illustrated by (i) increasing the binding affinity of a consensus pentapeptide motif toward the β subunit of DNA polymerase III holoenzyme by mutation of a phenylalanine to a SFPhe residue, (ii) site-specifically adhering β-cyclodextrin to the surface of ubiquitin, and (iii) selective detection of F-F nuclear Overhauser effects in the peptidyl-prolyl /-isomerase B following mutation of two phenylalanine residues in the core of the protein to SFPhe. With increasing use of the SF moiety in pharmaceutical chemistry, this general method of functionalizing proteins with SF groups opens unique opportunities for structural biology and studies.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/jacs.0c07976 | DOI Listing |
Int J Biol Macromol
January 2025
School of Landscape Architecture, Beijing Forestry University, Beijing 100083, China; Beijing Key Laboratory of Ornamental Plants Germplasm Innovation & Molecular Breeding, National Engineering Research Center for Floriculture, Engineering Research Center of Landscape Environment of Ministry of Education, Key Laboratory of Genetics and Breeding in Forest Trees and Ornamental Plants of Ministry of Education, China. Electronic address:
The GRAS gene family, is instrumental in a myriad of biological processes, including plant growth and development. Our findings revealed that Paeonia ludlowii (Stern & G.Taylor) D.
View Article and Find Full Text PDFSci Total Environ
January 2025
Department of Twin Research and Genetic Epidemiology, King's College London, 3-4th Floor South Wing Block D, St Thomas' Hospital, Westminster Bridge Road, London SE1 7EH, UK. Electronic address:
Heavy metals in our direct environment have profound effects on human health and while some are essential for life, others can be toxic. In vivo studies often focus on clinical features caused by overexposure to, or by deprivation of a heavy metal. However, to understand the cellular impact of heavy metals on health, studies in healthy volunteers before symptom onset are needed.
View Article and Find Full Text PDFPathol Res Pract
January 2025
Department of Pathology, University of Alabama at Birmingham, Birmingham, AL 35249, United States. Electronic address:
Estrogen receptor (ER) is a direct and reciprocal target gene for GATA3. Previous studies have shown that higher GATA3 expression in primary breast cancer (BC) is associated with a reduced probability of developing lung metastasis when compared to those with metastatic recurrence to other organs. Further, GATA3 downregulates several genes promoting BC lung metastasis and upregulates genes encoding known inhibitors of lung metastasis.
View Article and Find Full Text PDFMicrobiol Spectr
January 2025
Faculty of Chemistry, Biotechnology and Food Science, NMBU - Norwegian University of Life Sciences, Ås, Norway.
Unlabelled: a natural inhabitant of the human body, is a promising candidate vehicle for vaccine delivery. An obstacle in developing bacterial delivery vehicles is generating a production strain that lacks antibiotic resistance genes and contains minimal foreign DNA. To deal with this obstacle, we have constructed a finetuned, inducible two-plasmid CRISPR/Cas9-system for chromosomal gene insertion in .
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Département de microbiologie et d'infectiologie, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, 3201 rue Jean-Mignault, Sherbrooke, QC J1E 4K8, Canada.
In baker's yeast, genes encoding ribosomal proteins often exist as duplicate pairs, typically with one 'major' paralog highly expressed and a 'minor' less expressed paralog that undergoes controlled expression through reduced splicing efficiency. In this study, we investigate the regulatory mechanisms controlling splicing of the minor paralog of the uS4 protein gene (RPS9A), demonstrating that its splicing is repressed during vegetative growth but upregulated during meiosis. This differential splicing of RPS9A is mediated by two transcription factors, Rim101 and Taf14.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!