This study aimed to investigate the rate of passive torque variations of human knee joint in the different velocities of knee flexion and extension movements. Ten healthy men were invited to participate in the tests. All passive torque tests were performed for the knee joint extension and flexion on the sagittal plane in three different angular velocities of 15, 45, and 120°/s; in 5 consecutive cycles; and within 0° to 100° range of motion. The electrical activity of knee joint extensor and flexor muscles was recorded until there was no muscle activity signal. A Three-element Solid Model (SLS) was used to obtain the viscose and elastic coefficients. As the velocity increases, the stretch rate in velocity-independent tissues increases, and the stretch rate in velocity-dependent tissues decreases. By increasing the velocity, the resistance of velocity-dependent parts increases, and the velocity-independent parts are not affected by velocity. Since the first torque that resists the joint movement is passive torque, the elastic and viscous torques should be simultaneously used. It is better to perform the movement at a low velocity so that less energy is lost. The viscoelastic resistance of tissues diminishes. Graphical abstract.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11517-020-02247-0 | DOI Listing |
J Funct Morphol Kinesiol
December 2024
Faculty of Rehabilitation Sciences, Nishi Kyushu University, Kanzaki-shi 842-0015, Saga, Japan.
: the purpose of this study was to determine the contributions of mechanical, neural, morphological, and muscle quality factors on individual differences in the maximal ankle dorsiflexion range of motion (ROM). : A sample of 41 university students performed passive-dorsiflexion and morphological measurements. In the passive-dorsiflexion measurement, while the ankle was passively dorsiflexed, maximal dorsiflexion ROM was measured in addition to passive torque at a given angle and muscle-tendon junction (MTJ) displacement during the last 13° as mechanical factors, and stretch tolerance and muscle activation were measured as neural factors.
View Article and Find Full Text PDFPLoS One
December 2024
School of Health and Life Sciences, University of Nicosia, Nicosia, Cyprus.
Background: The last phases of a competitive game are when shoulder injuries most commonly happen, and fatigue is thought to be a major contributing factor, perhaps because of reduced proprioception and motor control. The purpose of this study was to investigate the effect of concentric fatigue on proprioception, motor control, and performance of the upper limb in handball players.
Methods: Forty-six right-handed handball players (all males, age 26.
J Exp Biol
November 2024
Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, St Luke's Campus, Exeter, EX1 2LU, UK.
Human proficiency for bipedal locomotion relies on the structure and function of our feet, including the interplay between active muscles and passive structures acting on the toes during the propulsive phase of gait. However, our understanding of the relative contributions of these different structures remains incomplete. We aimed to determine the distinct toe-flexion torque-angle relationships of the plantar intrinsic muscles (PIMs), extrinsic muscles, and passive structures, therefore offering insight into their force-generating capabilities and importance for walking and running.
View Article and Find Full Text PDFOrthop J Sports Med
November 2024
Division of Biokinesiology and Physical Therapy, University of Southern California, Los Angeles, California, USA.
Background: The mechanism of ulnar collateral ligament (UCL) injury during pitching is excessive elbow varus torque (EVT). The EVT-ball velocity (T-V) relationship allows concurrent assessment of player performance and UCL injury risk. Modifiable physical capacities may underlie individual variation seen in the T-V relationship.
View Article and Find Full Text PDFSoft Matter
December 2024
Departamento de Estructura de la Materia, Física Térmica y Electrónica, Universidad Complutense de Madrid, 28040 Madrid, Spain.
In this work, with the intent of exploring the out-of-equilibrium polymerization of active patchy particles in linear chains, we study a suspension of active bifunctional Brownian particles (ABBPs). At all studied temperatures and densities, ABBPs self-assemble in aggregating chains, as opposed to the uniformly space-distributed chains observed in the corresponding passive systems. The main effect of activity, other than inducing chain aggregation, is to reduce the chain length and favour the alignment of the propulsion vectors in the bonding process.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!