Objective: Test a practical realignment approach to compensate the technical variability of MR radiomic features.
Methods: T1 phantom images acquired on 2 scanners, FLAIR and contrast-enhanced T1-weighted (CE-T1w) images of 18 brain tumor patients scanned on both 1.5-T and 3-T scanners, and 36 T2-weighted (T2w) images of prostate cancer patients scanned in one of two centers were investigated. The ComBat procedure was used for harmonizing radiomic features. Differences in statistical distributions in feature values between 1.5- and 3-T images were tested before and after harmonization. The prostate studies were used to determine the impact of harmonization to distinguish between Gleason grades (GGs).
Results: In the phantom data, 40 out of 42 radiomic feature values were significantly different between the 2 scanners before harmonization and none after. In white matter regions, the statistical distributions of features were significantly different (p < 0.05) between the 1.5- and 3-T images for 37 out of 42 features in both FLAIR and CE-T1w images. After harmonization, no statistically significant differences were observed. In brain tumors, 41 (FLAIR) or 36 (CE-T1w) out of 42 features were significantly different between the 1.5- and 3-T images without harmonization, against 1 (FLAIR) or none (CE-T1w) with harmonization. In prostate studies, 636 radiomic features were significantly different between GGs after harmonization against 461 before. The ability to distinguish between GGs using radiomic features was increased after harmonization.
Conclusion: ComBat harmonization efficiently removes inter-center technical inconsistencies in radiomic feature values and increases the sensitivity of studies using data from several scanners.
Key Points: • Radiomic feature values obtained using different MR scanners or imaging protocols can be harmonized by combining off-the-shelf image standardization and feature realignment procedures. • Harmonized radiomic features enable one to pool data from different scanners and centers without a substantial loss of statistical power caused by intra- and inter-center variability. • The proposed realignment method is applicable to radiomic features from different MR sequences and tumor types and does not rely on any phantom acquisition.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00330-020-07284-9 | DOI Listing |
PLoS One
January 2025
Department of Geriatric Medicine, the Affiliated Hospital of Guilin Medical University, Guilin, Guangxi, China.
Objective: To develop a predictive model for microvascular invasion (MVI) in hepatocellular carcinoma (HCC) through radiomics analysis, integrating data from both enhanced computed tomography (CT) and magnetic resonance imaging (MRI).
Methods: A retrospective analysis was conducted on 93 HCC patients who underwent partial hepatectomy. The gold standard for MVI was based on the histopathological diagnosis of the tissue.
Radiol Med
January 2025
Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
Purpose: Bodyweight loss is commonly found in Nasopharyngeal Carcinoma patients during Concurrent Chemo-radiotherapy (CCRT) and has implications for treatment decisions. However, the prognostic value of this weight loss remains uncertain. We addressed it by proposing a novel index Weight Censorial Score (WCS) that characterizes the patient-specific CCRT response on actual to estimated weight loss.
View Article and Find Full Text PDFPurpose: We hypothesised that applying radiomics to [F]PSMA-1007 PET/CT images could help distinguish Unspecific Bone Uptakes (UBUs) from bone metastases in prostate cancer (PCa) patients. We compared the performance of radiomic features to human visual interpretation.
Materials And Methods: We retrospectively analysed 102 hormone-sensitive PCa patients who underwent [F]PSMA-1007 PET/CT and exhibited at least one focal bone uptake with known clinical follow-up (reference standard).
Front Cardiovasc Med
January 2025
Department of Medical Imaging, The Second Hospital of Hebei Medical University, Shijiazhuang, China.
Objectives: To evaluate the feasibility of utilizing cardiac computer tomography (CT) images for extracting the radiomic features of the myocardium at the junction between the left atrial appendage (LAA) and the left atrium (LA) in patients with atrial fibrillation (AF) and to evaluate its asscociation with the risk of AF.
Methods: A retrospective analysis was conducted on 82 cases of AF and 56 cases in the control group who underwent cardiac CT at our hospital from May 2022 to May 2023, with recorded clinical information. The morphological parameters of the LAA were measured.
Front Neurol
January 2025
Department of Radiology, Affiliated Hospital 6 of Nantong University, Yancheng Third People's Hospital, Yancheng, Jiangsu, China.
Introduction: Early prognosis prediction of acute ischemic stroke (AIS) can support clinicians in choosing personalized treatment plans. The aim of this study is to develop a machine learning (ML) model that uses multiple post-labeling delay times (multi-PLD) arterial spin labeling (ASL) radiomics features to achieve early and precise prediction of AIS prognosis.
Methods: This study enrolled 102 AIS patients admitted between December 2020 and September 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!