Octanitropyrazolopyrazole: a gem-trinitromethyl based green high-density energetic oxidizer.

Chem Commun (Camb)

Laboratory for Energetic and Energy Materials Research, Department of Chemistry, National Institute of Technology Calicut, Calicut 673601, India.

Published: October 2020

Environmental concerns demand the replacement of ammonium perchlorate (AP) by a green oxidizer in composite propellants. Herein, we report the synthesis and characterization of a novel green high-density energetic oxidizer octanitropyrazolopyrazole (ONPP). With its high specific impulse (256 s), high density (1.997 g cm-3) and good thermal stability (160 °C), ONPP can potentially replace AP.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cc05704eDOI Listing

Publication Analysis

Top Keywords

green high-density
8
high-density energetic
8
energetic oxidizer
8
octanitropyrazolopyrazole gem-trinitromethyl
4
gem-trinitromethyl based
4
based green
4
oxidizer environmental
4
environmental concerns
4
concerns demand
4
demand replacement
4

Similar Publications

Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.

View Article and Find Full Text PDF

Revolutionary bamboo crash barriers utilizing sustainable materials for enhanced road safety.

Sci Rep

January 2025

Department of Mechanical Engineering, Government Engineering College, Barton Hill, Thiruvananthapuram, Kerala, India.

Road accidents are a growing concern worldwide, and crash barriers have significantly reduced the severity of these incidents. In its pursuit of developing an eco-friendly crash barrier, India installed the world's first 200 m bamboo crash barrier, on Bombay-Pune Highway. Although its eco-friendly and recyclable design is commendable, using Bambusa balcooa infused with creosote oil and covered with High-density polyethylene (HDPE) raises substantial health and environmental issues due to the presence of toxic and carcinogenic Polycyclic aromatic hydrocarbons (PAHs).

View Article and Find Full Text PDF

[Surveillance of the population density of adult in Guangdong Province from 2018 to 2023].

Zhongguo Xue Xi Chong Bing Fang Zhi Za Zhi

August 2024

Institute of Disinfection and Vector Control, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou, Guangdong 511430, China.

Objective: To investigate the fluctuations in the population density of and changes in the population density of in different geographical areas and different breeding habitats in Guangdong Province from 2018 to 2023, so as to provide insights into prevention and control of mosquito-borne infectious diseases in the province.

Methods: surveillance sites were assigned in 1 609 townships (streets) from 121 districts (counties) of 21 cities in Guangdong Province during the period between March and November from 2018 to 2023. The surveillance of the population density of was performed once a month in each surveillance site, and once a month in specific settings in cities where dengue were highly prevalent in Guangdong Province from December to February of the next year during the period from 2018 through 2023.

View Article and Find Full Text PDF

High-Strength Ultrafine-Grained Al-Mg-Si Alloys Exposed to Mechanical Alloying and Press-Forming: A Comparison with Cast Alloys.

Materials (Basel)

December 2024

Shandong Laboratory of Advanced Materials and Green Manufacturing at Yantai, Yantai 264006, China.

A high-strength Al-Mg-Si alloy was prepared using mechanical alloying (MA) combined with press-forming (PF) technology, achieving a strength of up to 715 MPa and a hardness of 173 HB. The microstructures were comparatively analyzed with conventional cast Al-Mg-Si alloys using XRD, TKD, and TEM. The XRD results showed that the full width at half maximum (FWHM) of the alloy prepared by MA+PF was significantly broadened and accompanied by a shift in the diffraction peak.

View Article and Find Full Text PDF

Identification of Candidate Genes for Green Rind Color in Watermelon.

Plants (Basel)

January 2025

Hubei Key Laboratory of Vegetable Germplasm Enhancement and Genetic Improvement, Institute of Industrial Crops, Hubei Academy of Agricultural Sciences, Wuhan 430064, China.

The color of the rind is one of the most crucial agronomic characteristics of watermelon ( L.). Its genetic analysis was conducted to provide the identification of genes regulating rind color and improving the quality of watermelon appearance.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!