The Coronavirus Disease 2019 (COVID-19) pandemic caused by the Severe Acute Respiratory Syndrome Related Coronavirus 2 (SARS-CoV-2) is a global health emergency. As only very limited therapeutic options are clinically available, there is an urgent need for the rapid development of safe, effective, and globally available pharmaceuticals that inhibit SARS-CoV-2 entry and ameliorate COVID-19 severity. In this study, we explored the use of small compounds acting on the homeostasis of the endolysosomal host-pathogen interface, to fight SARS-CoV-2 infection. We find that fluoxetine, a widely used antidepressant and a functional inhibitor of acid sphingomyelinase (FIASMA), efficiently inhibited the entry and propagation of SARS-CoV-2 in the cell culture model without cytotoxic effects and also exerted potent antiviral activity against two currently circulating influenza A virus subtypes, an effect which was also observed upon treatment with the FIASMAs amiodarone and imipramine. Mechanistically, fluoxetine induced both impaired endolysosomal acidification and the accumulation of cholesterol within the endosomes. As the FIASMA group consists of a large number of small compounds that are well-tolerated and widely used for a broad range of clinical applications, exploring these licensed pharmaceuticals may offer a variety of promising antivirals for host-directed therapy to counteract enveloped viruses, including SARS-CoV-2.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7594754 | PMC |
http://dx.doi.org/10.1080/22221751.2020.1829082 | DOI Listing |
Front Immunol
January 2025
Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
The human voltage-gated proton channel (H1) provides an efficient proton extrusion pathway from the cytoplasm contributing to the intracellular pH regulation and the oxidative burst. Although its pharmacological inhibition was previously shown to induce cell death in various cell types, no such effects have been examined in polarized macrophages albeit H1 was suggested to play important roles in these cells. This study highlights that 5-chloro-2-guanidinobenzimidazole (ClGBI), the most widely applied H1 inhibitor, reduces the viability of human THP-1-derived polarized macrophages at biologically relevant doses with M1 macrophages being the most, and M2 cells the least sensitive to this compound.
View Article and Find Full Text PDFPLoS One
December 2024
Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China.
Drug resistance of cancers remains a major obstacle due to limited therapeutics. Lysosome targeting is an effective method for overcoming drug resistance in cancer cells. St-N (ent-13-hydroxy-15-kaurene-19-acid N-methylpiperazine ethyl ester) is a novel alkaline stevioside derivative with an amine group.
View Article and Find Full Text PDFInt J Neonatal Screen
December 2024
Division of Inherited Metabolic Diseases, Department of Women's and Children's Health, University Hospital of Padua, 35128 Padua, Italy.
Acid sphingomyelinase deficiency (ASMD) is a rare lysosomal storage disorder with a broad clinical spectrum. Early diagnosis and initiation of treatment are crucial for improving outcomes, yet the disease often goes undiagnosed due to its rarity and phenotypic heterogeneity. This study aims to evaluate the feasibility and disease incidence of newborn screening (NBS) for ASMD in Italy.
View Article and Find Full Text PDFHandb Exp Pharmacol
December 2024
Pharmacokinetics, Dynamics, Metabolism - Translational Medicine, Research & Development, Sanofi-US, Bridgewater, NJ, USA.
Quantitative Systems Pharmacology (QSP) models offer a promising approach to extrapolate drug efficacy across different patient populations, particularly in rare diseases. Unlike conventional empirical models, QSP models can provide a mechanistic understanding of disease progression and therapeutic response by incorporating current disease knowledge into the descriptions of biomarkers and clinical endpoints. This allows for a holistic representation of the disease and drug response.
View Article and Find Full Text PDFAcid sphingomyelinase deficiency (ASMD) is a rare progressive genetic disorder caused by pathogenic variants in the gene causing low or absent activity of the enzyme acid sphingomyelinase, resulting in subsequent accumulation of its substrate, sphingomyelin. Signs and symptoms of excessive lysosomal sphingomyelin storage, such as hepatosplenomegaly and pulmonary impairment, and in a subset of patients, progressive neurological manifestations, have long been recognized as hallmarks of the disease. Uncontrolled accumulation of sphingomyelin has important and complex downstream metabolic and immunologic consequences that contribute to the disease burden.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!