Two Origins of Broadband Emission in Multilayered 2D Lead Iodide Perovskites.

J Phys Chem Lett

Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.

Published: October 2020

Broadband emission in lead iodide 2D perovskites has been alternately attributed to self-trapped excitons (STEs) or permanent structural defects and/or impurities. Here, we investigate six different multilayered ( > 1) 2D lead iodide perovskites as a function of sample temperature from 5 to 300 K. We distinguish shallow defect-associated emission from a broad near-infrared (NIR) spectral feature, which we assign to an STE through subgap photoexcitation experiments. When we varied the thickness ( = 2, 3, 4), A-site cation (methylammonium vs formamidinium), and organic spacer (butylammonium vs hexylammonium vs phenylethylammonium), we found that the temperature dependence of broad NIR emission was strongly correlated with both the strength of electron-phonon coupling and the extent of structural deformation of the ground-state lattice, strongly supporting the assignment of this spectral feature to an STE. However, the extent to which formation of these STEs is intrinsic versus defect-assisted remains open to debate.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acs.jpclett.0c02214DOI Listing

Publication Analysis

Top Keywords

lead iodide
12
iodide perovskites
12
broadband emission
8
multilayered lead
8
spectral feature
8
origins broadband
4
emission
4
emission multilayered
4
perovskites broadband
4
emission lead
4

Similar Publications

Undesirable loss of open-circuit voltage and current of metal halide perovskite (MHP) solar cells are closely associated with defects, so theoretical calculations have been often performed to scrutinize the nature of defects in bulk of MHPs. Yet, exploring the properties of defects at surfaces of MHPs is severely lacking given the complexity of the surface defects with high concentrations. In this study, IPb (PbI) antisite defects, namely one Pb (I) site being occupied by one I (Pb) atom at the surfaces of the FAPbI3 (FA = CH(NH2)2) material, are found to create electron (hole) traps when the surfaces with IPb (PbI) antisite defects are negatively (positively) charged.

View Article and Find Full Text PDF

Is There an Optimal Spacer Cation for Two-Dimensional Lead Iodide Perovskites?

ACS Mater Au

January 2025

Beijing National Laboratory for Molecular Science, State Key Laboratory of Rare Earth Materials Chemistry and Applications, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China.

Two-dimensional lead iodide perovskites have attracted significant attention for their potential applications in optoelectronic and photonic devices due to their tunable excitonic properties. The choice of organic spacer cations significantly influences the light emission and exciton transport properties of these materials, which are vital for their device performance. In this Perspective, we discuss the impact of spacer cations on lattice dynamics and exciton-phonon coupling, focusing on three representative 2D lead iodide perovskites that exhibit distinct types of structural distortions.

View Article and Find Full Text PDF

Wafer-scale monolayer MoS film integration for stable, efficient perovskite solar cells.

Science

January 2025

Beijing Key Laboratory for Theory and Technology of Advanced Battery Materials, Key Laboratory of Polymer Chemistry and Physics of Ministry of Education, School of Materials Science and Engineering, Peking University, Beijing, China.

One of the primary challenges in commercializing perovskite solar cells (PSCs) is achieving both high power conversion efficiency (PCE) and sufficient stability. We integrate wafer-scale continuous monolayer MoS buffers at the top and bottom of a perovskite layer through a transfer process. These films physically block ion migration of perovskite into carrier transport layers and chemically stabilize the formamidinium lead iodide phase through strong coordination interaction.

View Article and Find Full Text PDF

Unveiling the nexus between irradiation and phase reconstruction in tin-lead perovskite solar cells.

Nat Commun

January 2025

School of Physics and Technology, and Key Laboratory of Artificial Micro- and Nano-structures of Ministry of Education, Wuhan University, Wuhan, China.

Tin-lead perovskites provide an ideal bandgap for narrow-bandgap perovskites in all-perovskite tandem solar cells, fundamentally improving power conversion efficiency. However, light-induced degradation in ambient air is a major issue that can hinder the long-term operational stability of these devices. Understanding the specifics of what occurs during this pathway provides the direction for improving device stability.

View Article and Find Full Text PDF

Utilizing the soft-lattice nature of metal halide perovskites, we employ post-synthetic cross-ion exchange to synthesize a series of narrow band-gap colloidal nanocrystals of methylammonium-based lead iodide solid solutions of composition FAMAPbI, as well as those of triple-cation composition CsFAMAPbI (TCPbI). The ability to finely tune the compositions not only helps in tailoring the optical properties in the near-infrared region, but also improves the stability of these colloidal nanocrystals towards moisture, which has been demonstrated as compared to their bulk counterparts. The thermal stability of these solid solutions is also comparable to that of the bulk, as evidenced by thermogravimetric studies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!