Triphenylamine (TPA) has often been used as a building block to construct functional organic materials yet is rarely employed in oxygen reduction reaction (ORR) due to its strong electron-donating ability. This versatile segment bears a three-dimensional spatial structure whose effect has not been fully explored in catalytic systems. To this end, five symmetric cobalt porphyrins with carbazole and TPA derivatives have been synthesized and their ORR performance has been evaluated in acid medium. It was found that all compounds produced mainly hydrogen peroxide in oxygen reduction, with attaching benzyl derivatives and possessing TPA-carbazole substituents at the position of porphyrin, showing similar but more positive ORR potential as compared to the other analogues. Importantly, achieved the greatest response current and the largest electron transfer numbers and HO yields among the investigated molecules. Detailed electrochemical measurements suggested that the dipole-induced partial charges on the porphyrin in tandem with the more exposed molecular orbitals on TPA contributed to this enhancement, with the former attracting more protons to the affinity of reactive sites and the latter increasing the collision frequency between the electrocatalyst and H in solution. This is the first attempt to integrate the intermolecular forces with more exposed molecular orbitals in altering the electrochemical process.

Download full-text PDF

Source
http://dx.doi.org/10.1021/acsami.0c11742DOI Listing

Publication Analysis

Top Keywords

oxygen reduction
12
exposed molecular
12
molecular orbitals
12
reduction reaction
8
intermolecular forces
8
enhanced oxygen
4
reaction performance
4
performance intermolecular
4
forces coupled
4
coupled exposed
4

Similar Publications

A subgroup of pigs from two experiments (EXP) were selected to evaluate the impact of pigs fed diets containing peroxidized soybean oil (SO) on plasma-based measures of oxidative stress and vitamin E. Pigs were fed diets containing SO that was either unprocessed (23 °C; peroxide value of 3 meq/kg and an anisidine value of 4) or thermally processed at 135 °C for 42 h (peroxide value of 30 meq/kg and an anisidine value of 501). The corn-soybean meal-based diets contained either 10% SO (EXP 1) or 8% SO (EXP 2).

View Article and Find Full Text PDF

Developing efficient strategies for the deoxygenative functionalization of carbonyl compounds is crucial for enhancing the effective utilization of biomass and the upgrading of chemical feedstocks. In this study, we present an elegant cathodic reduction strategy that enables a tandem alkylation/dearomatization reaction between quinoline derivatives and aryl aldehydes/ketones in a one-pot process. Our approach can be executed via two distinct paths: the aluminum (Al)-facilitated spin-center shift (SCS) path and the Al-facilitated direct deoxygenation path.

View Article and Find Full Text PDF

Carboxylated cellulose nanocrystals mediated flower-like zinc oxide for antimicrobial without activation of light.

J Colloid Interface Sci

April 2025

State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China. Electronic address:

Conventional light-driven antimicrobial strategies of zinc oxide (ZnO) are limited by inadequate illumination in dark environments. In this study, carboxylated cellulose nanocrystals (MCNC) mediated flower-like ZnO (C@Z) with self-promoted reactive oxygen species release under dark is fabricated. The adsorption of Zn ions on MCNC prompts the growth of ZnO along the (002) crystal plane, forming a flower-like hybrid with superior dispersibility and oxygen vacancies compared to MCNC-free ZnO, which exposes the (100) plane.

View Article and Find Full Text PDF

Green preparation of highly transparent nano-NH-UiO(Zr)-66/cellulose composite films with high-strength, superior flame retardant and UV to high-energy blue light shielding performance.

Int J Biol Macromol

January 2025

Engineering Research Center for Hemp and Product in Cold Region of Ministry of Education, School of Light Industry and Textile, Qiqihar University, Qiqihar 161006, PR China. Electronic address:

From the perspective of sustainable development and practical applications, there is a significant demand for the design of advanced cellulose-based film materials with superior mechanical, optical, and functional properties utilizing environmentally friendly strategies. Herein, biodegradable, mechanically robust and flame-retardant cellulose films with adjustable optical performance were successfully fabricated by in situ synthesis of NH-UiO(Zr)-66 via a DMF-free green process at room temperature. The results indicate that the introduction of NH-UiO(Zr)-66 enables films to realize a desirable flame retardancy (the limiting oxygen index (LOI) increased significantly from 19.

View Article and Find Full Text PDF

Intranasal oxytocin for apathy in people with frontotemporal dementia (FOXY): a multicentre, randomised, double-blind, placebo-controlled, adaptive, crossover, phase 2a/2b superiority trial.

Lancet Neurol

February 2025

Department of Clinical Neurological Sciences, University of Western Ontario, London, ON, Canada; Department of Cognitive Neurology, St Joseph's Health Care London, London, ON, Canada. Electronic address:

Background: No treatments exist for apathy in people with frontotemporal dementia. Previously, in a randomised double-blind, placebo-controlled, dose-finding study, intranasal oxytocin administration in people with frontotemporal dementia improved apathy ratings on the Neuropsychiatric Inventory over 1 week and, in a randomised, double-blind, placebo-controlled, crossover study, a single dose of 72 IU oxytocin increased blood-oxygen-level-dependent signal in limbic brain regions. We aimed to determine whether longer treatment with oxytocin improves apathy in people with frontotemporal dementia.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!