Neuraminidase inhibitors (NAIs), that currently include oseltamivir (Tamiflu ), zanamivir (Relenza ), peramivir (Rapivab ) and laninamivir (Inavir ), constitute an important class of antivirals recommended against seasonal influenza A and B infections. NAIs target the surface NA protein whose sialidase activity is responsible for virion release from infected cells. Because of their pivotal role in the transcription/translation process, the polymerase acidic (PA) and polymerase basic 1 and 2 (PB1 and PB2, respectively) internal proteins also constitute targets of interest for the development of additional anti-influenza agents. Baloxavir marboxil (BXM), an inhibitor of the cap-dependent endonuclease activity of the influenza PA protein, was approved in the United States and Japan in 2018. Baloxavir acid (BXA), the active compound of BXM, demonstrated a potent in vitro activity against different types/subtypes of influenza viruses including seasonal influenza A/B strains as well as avian influenza A viruses with a pandemic potential. A single oral dose of BXM provided virological and clinical benefits that were respectively superior or equal to those displayed by the standard (5 days, twice daily) oseltamivir regimen. Nevertheless, BXM-resistant variants have emerged at relatively high rates in BXM-treated children and adults. Consequently, there is a need to study the fitness (virulence and transmissibility) characteristics of mutants with a high potential to emerge as such variants can compromise the clinical usefulness of BXM. The purpose of this manuscript is to review the fitness properties of influenza A and B isolates harbouring mutations of reduced susceptibility to BXA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/rmv.2175 | DOI Listing |
Viruses
December 2024
Emerging Virus Group, Division of Zoonosis Research, National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba 3050856, Japan.
During the 2023-2024 winter, 11 high pathogenicity avian influenza (HPAI) outbreaks caused by clade 2.3.4.
View Article and Find Full Text PDFViruses
December 2024
Wadsworth Center, David Axelrod Institute, New York State Department of Health, Albany, NY 12208, USA.
A historical perspective of more than one hundred years of influenza surveillance in New York State demonstrates the progression from anecdotes and case counts to next-generation sequencing and electronic database management, greatly improving pandemic preparedness and response. Here, we determined if influenza virologic surveillance at the New York State public health laboratory (NYS PHL) tests sufficient specimen numbers within preferred confidence limits to assess situational awareness and detect novel viruses that pose a pandemic risk. To this end, we analyzed retrospective electronic data on laboratory test results for the influenza seasons 1997-1998 to 2021-2022 according to sample sizes recommended in the Influenza Virologic Surveillance Right Size Roadmap issued by the Association of Public Health Laboratories and Centers for Disease Control and Prevention.
View Article and Find Full Text PDFViruses
December 2024
Department of Pathology, National Institute of Infectious Diseases, Shinjuku-ku, Tokyo 162-8640, Japan.
Progressive multifocal leukoencephalopathy (PML) is a demyelinating disease caused by the JC polyomavirus (JCPyV). Based on the clinical criteria, PML is diagnosed via polymerase chain reaction (PCR) detection of JCPyV DNA in cerebrospinal fluid (CSF) in combination with neurological and imaging findings. Although the utility of CSF JCPyV testing using ultrasensitive PCR assays has been suggested, its potential requires further evaluation.
View Article and Find Full Text PDFViruses
December 2024
Department of Experimental and Clinical Medicine, University of Florence, Viale Morgagni 48, I-50134 Florence, Italy.
Background: Understanding the interference patterns of respiratory viruses could be important for shedding light on potential strategies to combat these human infectious agents.
Objective: To investigate the possible interactions between adenovirus type 2 (AdV2), severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A/H1N1 pandemic (H1N1pdm09) using the A549 cell line.
Methods: Single infections, co-infections, and superinfections (at 3 and 24 h after the first virus infection) were performed by varying the multiplicity of infection (MOI).
Viruses
December 2024
Department of Microbiology, Virology, and Immunology, I. Horbachevsky Ternopil National Medical University, 46001 Ternopil, Ukraine.
Metformin, a widely used antidiabetic medication, has emerged as a promising broad-spectrum antiviral agent due to its ability to modulate cellular pathways essential for viral replication. By activating AMPK, metformin depletes cellular energy reserves that viruses rely on, effectively limiting the replication of pathogens such as influenza, HIV, SARS-CoV-2, HBV, and HCV. Its role in inhibiting the mTOR pathway, crucial for viral protein synthesis and reactivation, is particularly significant in managing infections caused by HIV, CMV, and EBV.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!