A concise and asymmetric synthesis of the enantiomeric pyrrolidines 2 and ent-2 are herein reported. Both enantiomers were assessed as β-GCase inhibitors. While compound ent-2 acted as a poor competitive inhibitor, its enantiomer 2 proved to be a potent non-competitive inhibitor. Docking studies were carried out to substantiate their respective protein binding mode. Both pyrrolidines were also able to enhance lysosomal β-GCase residual activity in N370S homozygous Gaucher fibroblasts. Notably, the non-competitive inhibitor 2 displayed an enzyme activity enhancement comparable to that of reference compounds IFG and NN-DNJ. This work highlights the impact of inhibitors chirality on their protein binding mode and shows that, beyond competitive inhibitors, the study of non-competitive ones can lead to the identification of new relevant parmacological chaperones.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1039/d0ob01522a | DOI Listing |
Molecules
December 2024
Department of Organic Chemistry, Faculty of Chemical Sciences, University of Salamanca, Pl. Caídos, s/n, 37008 Salamanca, Spain.
2-Arylethylamines are presented in several natural bioactive compounds, as well as in nitrogen-containing drugs. Their ability to surpass the blood-brain barrier makes this family of compounds of especial interest in medicinal chemistry. Asymmetric methodologies towards the synthesis of 2-arylethylamine motives are of great interest due to the challenges they may present.
View Article and Find Full Text PDFHeliyon
April 2024
Department of Mathematics, College of Science, University of Bisha, P.O. Box 551, Bisha 61922, Saudi Arabia.
The premise of extreme value theory focuses on the stochastic behaviour and occurrence of extreme observations in an event that is random. Traditionally for univariate case, the behaviour of the maxima is described either by the types-I, types-II or types-III extreme value distributions, primarily known as the Gumbel, Fréchet or reversed Weibull models. These are all particular cases of the generalized extreme value ( ) model.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Hubei Research Center of Fundamental Science-Chemistry, College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, China.
The "Magic Methyl" effect has received tremendous interest in medicinal chemistry due to the significant pharmacological and physical modification of properties that have been observed upon introducing a methyl group, especially, a stereogenic methyl group into potential chiral drug candidates. The prevalence of stereogenic β-methyl ketone structural motifs in bioactive compounds and natural products has long motivated the development of enantioselective strategies toward their synthesis. Herein, we have rationally designed a Rh-catalyzed asymmetric monohydrogenation of readily-available β'-methylene conjugated enones with high efficiency and remarkable site-selectivity and enantioselectivity control for the practical construction of enantioenriched β'-methyl unsaturated enones that are difficult to access by other methods.
View Article and Find Full Text PDFOrg Lett
December 2024
Key Laboratory of Radiopharmaceuticals, College of Chemistry, Beijing Normal University, Beijing 100875, China.
A highly efficient and enantioselective hydrogenation of exocyclic α,β-unsaturated nitriles catalyzed by the Rh-JosiPhos complex for synthesis of the chiral 2-benzocyclic acetonitriles has been developed. Both ()- and ()-isomers of exocyclic α,β-unsaturated nitriles with various benzocyclic structures, including heterocyclic (chroman and tetrahydroquinoline) scaffolds, were hydrogenated successfully, achieving excellent enantioselectivities (up to 97% ee) and high turnover numbers (TON up to 4000). Furthermore, this methodology provides an efficient, concise, and practical synthetic route to the sleep agent ()-Ramelteon.
View Article and Find Full Text PDFJACS Au
November 2024
Laboratory of Medicinal Chemical Biology, Department of Medicinal Chemistry, College of Pharmaceutical Sciences, Soochow University, 199 Ren'ai Road, Suzhou 215123, China.
(-)-Pleurotin () and (+)-dihydropleurotinic acid () are benzoquinone meroterpenoids isolated from fungal sources with powerful antitumor and antibiotic activities. Concise asymmetric total syntheses of the stereochemically pure (+)-dihydropleurotinic acid () and (-)-pleurotin () from the chiral pool ()-Roche ester-derived vinyl bromide have been achieved in 12 and 13 longest linear steps, respectively. The key transformations feature a Michael addition/alkylation cascade reaction to forge three contiguous stereocenters matched with the natural products, a PtO-catalyzed stereoselective reduction of olefin to generate the correct stereocenter at C3, a palladium-catalyzed Negishi cross-coupling between triflate and zinc reagent to introduce the redox-sensitive para-quinone moiety, and a hydroboration/copper-catalyzed carboxylation sequence to incorporate the vital carboxyl group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!