Nanostructured polymeric materials, functionalized with an appropriate receptor, have opened up newer possibilities for designing a reagent that shows analyte-specific recognition and efficient scavenging of an analyte that has either a detrimental influence on human physiology and environment or on its recovery for further value addition. Higher active surface area, morphological diversity, synthetic tunability for desired surface functionalization, and the ease of regeneration of a nanostructured material for further use have provided such materials with a distinct edge over conventional reagents. The use of a biodegradable polymeric backbone has an added significance owing to the recent concern over the impact of polymers on the environment. Functionalization of biodegradable sodium alginate with AENA (6.85% grafting) as the receptor functionality led to a unique open framework nanoring (NNRG) morphology with a favorable spatial orientation for specific recognition and efficient binding to uranyl ions (U) in an aqueous medium over a varied pH range. Nanoring morphology was confirmed by transmission electron microscopy and atomic force microscopy images. The nanoscale design maximizes the surface area for the molecular scavenger. A combination of all these features along with the reversible binding phenomenon has made NNRG a superior reagent for specific, efficient uptake of UO species from an acidic (pH 3-4) solution and compares better than all existing UO-scavengers reported till date. This could be utilized for the recovery of uranyl species from a synthetic acidic effluent of the nuclear power. The results of the U uptake experiments reveal a maximum adsorption capacity of 268 mg of U per g of NNRG in a synthetic nuclear effluent. X-ray photoelectron spectroscopy studies revealed a reductive complexation process and stabilization of U(IV)-species in adsorbed uranium species (U@NNRG).
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acssensors.0c01684 | DOI Listing |
Angew Chem Int Ed Engl
January 2025
Key Laboratory of Polyoxometalate and Reticular Material Chemistry of Ministry of Education, Chemistry, Renmin Street, 130024, Changchun, CHINA.
High capacity, selective recovery and separation of precious metals from complex aqueous solutions is essential but remains a challenge in practical applications. Here, we prepared a thiophene-modified aromatic porous organic cage (T-PAC) with high stability for precise recognition and recovery of gold. T-PAC exhibits an outstanding gold uptake capacity of up to 2260 mg/g with fast adsorption kinetics and high adsorption selectivity.
View Article and Find Full Text PDFMicrosc Res Tech
January 2025
AIDA Lab. College of Computer and Information Sciences (CCIS), Prince Sultan University, Riyadh, Saudi Arabia.
The development of deep learning algorithms has transformed medical image analysis, especially in brain tumor recognition. This research introduces a robust automatic microbrain tumor identification method utilizing the VGG16 deep learning model. Microscopy magnetic resonance imaging (MMRI) scans extract detailed features, providing multi-modal insights.
View Article and Find Full Text PDFSci Rep
January 2025
Colloid Chemistry, Department of Chemistry, University of Konstanz, Universitaetsstrasse 10, 78464, Konstanz, Germany.
Complex structures can be understood as compositions of smaller, more basic elements. The characterization of these structures requires an analysis of their constituents and their spatial configuration. Examples can be found in systems as diverse as galaxies, alloys, living tissues, cells, and even nanoparticles.
View Article and Find Full Text PDFAnal Chem
January 2025
School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, P. R. China.
Tumor-derived extracellular vesicles (T-EVs) PD-L1 are an important biomarker for predicting immunotherapy response and can help us understand the mechanism of resistance to immunotherapy. However, this is due to the interference from a large proportion of nontumor-derived EVs. It is still challenging to accurately analyze T-EVs PD-L1 in complex human fluids.
View Article and Find Full Text PDFJ Therm Biol
January 2025
ASSET, INRAE, Petit-Bourg (Guadeloupe), 97170, France.
Estimating animal behaviour during heat stress (HS) is particularly insightful to monitor animal welfare but also to better understand how animals thermoregulate. The present study is a proof of concept combining computer vision to monitor animal behaviour, continuous monitoring of subcutaneous temperature and recording of ambient temperature, with the aim to study the link between behaviour and animal body temperature during HS. A total of 22 pigs were video-monitored from 8:00 to 18.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!