Streptococcus agalactiae secrete virulence factors believed to be able of killing host tissues, especially under elevated water temperature. A direct effect of S. agalactiae secretory products on tilapia cells was tested on the tilapia kidney (TK-1) cell culture. The bacteria were cultured under four different temperature levels: 22, 29, 32 and 37°C; the cell-free portion was processed through SDS-PAGE; and distinct bands were identified by LC-MS/MS. At least, three virulence factors were identified, Bsp, PcsB and CAMP factor, with increasing levels as the cultured temperature rose. Expressions of bsp, pcsB and cfb were also up-regulated with the rising of the temperature in S. agalactiae culture. The supernatant from the bacteria cultured under specified temperatures was added into TK-1 cell-cultured wells. Morphological damage and mortality of the cultured cells, as determined by MTT method, were increased progressively from the supernatant treatment according to the rise of temperature in S. agalactiae culture. This study suggests that the production of the three virulence factors of S. agalactiae reported herein is temperature-dependent, and it is likely that CAMP factor directly kills the TK-1 cells since the other two types of protein are involved in S. agalactiae cell division and the bacterial adherence to host tissues.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/jfd.13230 | DOI Listing |
J Bone Joint Surg Am
December 2024
Pediatric Orthopaedic Unit, Pediatric Surgery Service, Geneva University Hospitals, Geneva, Switzerland.
Background: Transphyseal hematogenous osteomyelitis (THO) is a common infectious condition, being present in 25% of patients with hematogenous osteomyelitis. A large proportion of pediatric hematogenous osteomyelitis infections can spread through the growth cartilage and therefore may be potentially responsible for growth disorders, leading to limb-length discrepancy or angular deformities. The purpose of the present study was to identify both the prevalence of complications caused by transphyseal osteomyelitis and factors influencing their occurrence.
View Article and Find Full Text PDFPLoS Negl Trop Dis
December 2024
Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czechia.
Leishmania is a genus of the family Trypanosomatidae that unites obligatory parasitic flagellates causing a variety of vector-borne diseases collectively called leishmaniasis. The symptoms range from relatively innocuous skin lesions to complete failures of visceral organs. The disease is exacerbated if a parasite harbors Leishmania RNA viruses (LRVs) of the family Pseudototiviridae.
View Article and Find Full Text PDFToxins (Basel)
December 2024
Food and Feed Safety Research Unit, Southern Regional Research Center, US Department of Agriculture, New Orleans, LA 70124, USA.
Kojic acid is a secondary metabolite with strong chelating and antioxidant properties produced by and . Although antioxidants and chelators are important virulence factors for plant pathogens, the ecological role of kojic acid remains unclear. We previously observed a greater gene expression of antioxidants, especially kojic acid, by non-aflatoxigenic when co-cultured with aflatoxigenic Aflatoxin production was also reduced.
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Medical Research Institute, Southwest University, Chongqing 400715, China.
is a globally distributed human fungal pathogen that can cause cryptococcal meningitis with high morbidity and mortality. In this study, we identified an anaphase-promoting complex (APC) activator, Cdh1, and examined its impact on the virulence of . Our subcellular localization analysis revealed that Cdh1 is situated in the nucleus of .
View Article and Find Full Text PDFJ Fungi (Basel)
December 2024
Sanya Nanfan Research Institute, Hainan University, Sanya 572025, China.
A pathogen strain responsible for sweet potato stem and foliage scab disease was isolated from sweet potato stems. Through a phylogenetic analysis based on the rDNA internal transcribed spacer (ITS) region, combined with morphological methods, the isolated strain was identified as To comprehensively analyze the pathogenicity of the isolated strain from a genetic perspective, the whole-genome sequencing of HD-1 was performed using both the PacBio and Illumina platforms. The genome of HD-1 is about 26.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!