Evidence suggests that mindfulness meditation (MM) improves selective attention and reduces distractibility by enhancing top-down neural modulation. Altered P300 and alpha neural activity from MM have been identified and may reflect the neural changes that underpin these improvements. Given the proposed role of alpha activity in supressing processing of task-irrelevant information, it is theorised that altered alpha activity may underlie increased availability of neural resources in meditators. The present study investigated attentional function in meditators using a cross-modal study design, examining the P300 during working memory (WM) and alpha activity during concurrent distracting tactile stimuli. Thirty-three meditators and 27 healthy controls participated in the study. Meditators showed a more frontal distribution of P300 neural activity following WM stimuli (p = 0.005, η = 0.060) and more modulation of alpha activity at parietal-occipital regions between single (tactile stimulation only) and dual task demands (tactile stimulation plus WM task) (p < 0.001, η = 0.065). Additionally, meditators performed more accurately than controls (p = 0.038, η = 0.067). The altered distribution of neural activity concurrent with improved WM performance suggests greater attentional resources dedicated to task related functions, such as WM in meditators. Thus, meditation-related neural changes are likely multifaceted, involving both altered distribution and also amplitudes of brain activity, thereby enhancing attentional processes depending on task requirements.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.3758/s13415-020-00828-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!