Prediction of antimicrobial resistance in clinical Campylobacter jejuni isolates from whole-genome sequencing data.

Eur J Clin Microbiol Infect Dis

Department of Bacteria, Parasites & Fungi, Statens Serum Institut, Copenhagen, Denmark.

Published: April 2021

Campylobacter jejuni is recognised as the leading cause of bacterial gastroenteritis in industrialised countries. Although the majority of Campylobacter infections are self-limiting, antimicrobial treatment is necessary in severe cases. Therefore, the development of antimicrobial resistance (AMR) in Campylobacter is a growing public health challenge and surveillance of AMR is important for bacterial disease control. The aim of this study was to predict antimicrobial resistance in C. jejuni from whole-genome sequencing data. A total of 516 clinical C. jejuni isolates collected between 2014 and 2017 were subjected to WGS. Resistance phenotypes were determined by standard broth dilution, categorising isolates as either susceptible or resistant based on epidemiological cutoffs for six antimicrobials: ciprofloxacin, nalidixic acid, erythromycin, gentamicin, streptomycin, and tetracycline. Resistance genotypes were identified using an in-house database containing reference genes with known point mutations and the presence of resistance genes was determined using the ResFinder database and four bioinformatical methods (modified KMA, ABRicate, ARIBA, and ResFinder Batch Upload). We identified seven resistance genes including tet(O), tet(O/32/O), ant(6)-Ia, aph(2″)-If, blaOXA, aph(3')-III, and cat as well as mutations in three genes: gyrA, 23S rRNA, and rpsL. There was a high correlation between phenotypic resistance and the presence of known resistance genes and/or point mutations. A correlation above 98% was seen for all antimicrobials except streptomycin with a correlation of 92%. In conclusion, we found that WGS can predict antimicrobial resistance with a high degree of accuracy and have the potential to be a powerful tool for AMR surveillance.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7979593PMC
http://dx.doi.org/10.1007/s10096-020-04043-yDOI Listing

Publication Analysis

Top Keywords

antimicrobial resistance
16
resistance genes
12
resistance
10
campylobacter jejuni
8
jejuni isolates
8
whole-genome sequencing
8
sequencing data
8
predict antimicrobial
8
point mutations
8
presence resistance
8

Similar Publications

Tigecycline (Tgc), a third-generation tetracycline is found as the last line of defense against multi-drug resistant bacteria. Recent increased rate of resistance to tgc, a human-restricted agent among animal bacteria poses a significant global health challenge. Overuse of first generation tetracyclines (Tet) and phenicols in animals have been suggested to be associated with Tgc resistance development.

View Article and Find Full Text PDF

The Significance of Mono- and Dual-Effective Agents in the Development of New Antifungal Strategies.

Chem Biol Drug Des

January 2025

Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erzincan Binali Yildirim University, Erzincan, Turkiye.

Invasive fungal infections (IFIs) pose significant challenges in clinical settings, particularly due to their high morbidity and mortality rates. The rising incidence of these infections, coupled with increasing antifungal resistance, underscores the urgent need for novel therapeutic strategies. Current antifungal drugs target the fungal cell membrane, cell wall, or intracellular components, but resistance mechanisms such as altered drug-target interactions, enhanced efflux, and adaptive cellular responses have diminished their efficacy.

View Article and Find Full Text PDF

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

Bacteriophages infect gram-negative bacteria by attaching to molecules present on the bacterial surface, often lipopolysaccharides (LPS). Modification of LPS can lead to resistance to phage infection. In addition, LPS modifications can impact antibiotic susceptibility, allowing for phage-antibiotic synergism.

View Article and Find Full Text PDF

Background: Enterotoxigenic F4 E. coli (F4-ETEC) pose an economic threat to the swine industry through reduced growth, increased mortality and morbidity, and increased costs associated with treatment. Prevention and treatment of F4-ETEC often relies on antimicrobials; however, due to the threat of antimicrobial resistance, antimicrobial use is being minimized, and hence alternative control methods are needed.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!