Introduction: The correlation of antimicrobial susceptibility testing (AST) between agar dilution and gradient diffusion for is not well established, especially in strains with high MICs.
Aim: The objective of this study was to evaluate the accuracy of gradient diffusion for .
Methods: Fifty strains of , all tested by the agar dilution method according to CLSI methods and confirmed to be genetically distinct using molecular typing (NG-MAST), were selected. Isolates with high MICs were targeted. Gradient diffusion was performed for ceftriaxone (CRO), cefixime (CFX), azithromycin (AZT), tetracycline (TET) and fosfomycin (FOS) using two different commercial antimicrobial strips on different culture media (a non-commercial GC agar base with 1 % defined growth supplement and two commercial media). The performance of agar gradient diffusion was assessed based on accuracy, using essential and category agreements (EA and CA).
Results: Essential and categorical agreement were over 90 % for CRO, CFX and AZT on the two commercial agar media tested. Category disagreements were seen for CFX and AZT, mostly just very major errors. For TET, EA ranged from 80 to 96 % and CA ranged from 38 to 76 %, most of the misclassifications being minor errors. Finally, EA for FOS ranged between 80 and 98 %.
Conclusion: Gradient diffusion is an accurate and acceptable alternative for CRO, CFX and AZT. Caution is advised when MICs are reported by gradient diffusion approach breakpoints because of the possibility of very major errors. The use of gradient diffusion is limited for TET because of the high rate of minor errors.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7494190 | PMC |
http://dx.doi.org/10.1099/acmi.0.000116 | DOI Listing |
PLoS One
January 2025
Department of Biotechnology, University of Verona, Verona, Italy.
Lower atmospheric pressure affects biologically relevant physical parameters such as gas partial pressure and concentration, leading to increased water vapor diffusivity and greater soil water content loss through evapotranspiration. This might impact plant photosynthetic activity, resource allocation, water relations, and growth. However, the direct impact of low air pressure on plant physiology is largely unknown.
View Article and Find Full Text PDFJ Antimicrob Chemother
January 2025
Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Carretera de Colmenar Km 9,1. Madrid 28034, Spain.
Objectives: FDC susceptibility testing is challenging as none of the commercial tests have been proven to accurately determine the susceptibility in the area of technical uncertainty (ATU). Here, we evaluated the performance of different FDC testing methods on Klebsiella pneumoniae isolates around this range.
Methods: A challenging collection of 104 K.
Nano Lett
January 2025
Institute of Photoelectronic Thin Film Devices and Technology, State Key Laboratory of Photovoltaic Materials and Cells, Tianjin Key Laboratory of Efficient Solar Energy Utilization, Ministry of Education Engineering Research Center of Thin Film Photoelectronic Technology, Nankai University, 300350 Tianjin, China.
Hematite is a promising material for photoelectrochemical (PEC) water oxidation, but its photocurrent is limited by bulk charge recombination and poor oxidation kinetics. In this study, we report a high-performance FeO photoanode achieved through gradient surface gallium doping, utilizing a GaO overlayer on FeOOH precursors via atomic layer deposition (ALD) and co-annealing for Ga diffusion. The Ga-doped layer passivates surface states and modifies the band structure, creating a built-in electric field that enhances the charge separation efficiency.
View Article and Find Full Text PDFJ Phys Chem B
January 2025
Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
Structural, thermal, and dynamic properties of four deep eutectic solvents comprising choline chloride paired with phenolic derivative hydrogen-bond donors were probed using experiments and molecular simulations. The hydrogen-bond donors include phenol, catechol, -chlorophenol, and o-cresol, in a 3:1 mixture with the hydrogen-bond acceptor choline chloride. Density, viscosity, and pulsed-field gradient NMR diffusivity measurements were conducted over a range of temperatures.
View Article and Find Full Text PDFLangmuir
January 2025
Research Focus Area for Chemical Resource Beneficiation, Catalysis and Synthesis Research Group, North-West University, 11 Hoffman Street, Potchefstroom 2522, South Africa.
This study investigates the surfactant properties and efficiency of linear and Guerbet-type amino acid surfactants. Utilizing a Wilhelmy plate method, we assessed the colloidal efficiency of these surfactants, with the lowest observed critical micelle concentration at 0.046 mmol L, significantly reducing surface tension to as low as 25.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!