Oxygenic photosynthesis conducted by cyanobacteria has dramatically transformed the geochemistry of our planet. These organisms have colonized most habitats, including extreme environments such as the driest warm desert on Earth: the Atacama Desert. In particular, cyanobacteria highly tolerant to desiccation are of particular interest for clean energy production. These microorganisms are promising candidates for designing bioelectrodes for photocurrent generation owing to their ability to perform oxygenic photosynthesis and to withstand long periods of desiccation. Here, we present bioelectrochemical assays in which graphite electrodes were modified with the extremophile cyanobacterium sp. UTEXB3054 for photocurrent generation. Optimum working conditions for photocurrent generation were determined by modifying directly graphite electrode with the cyanobacterial culture (direct electron transfer), as well as using an Os polymer redox mediator (mediated electron transfer). Besides showing outstanding photocurrent production for sp. UTEXB3054, both in direct and mediated electron transfer, our results provide new insights into the metabolic basis of photocurrent generation and the potential applications of such an assisted bioelectrochemical system in a worldwide scenario in which clean energies are imperative for sustainable development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7471869 | PMC |
http://dx.doi.org/10.3389/fbioe.2020.00900 | DOI Listing |
ACS Nano
January 2025
School of Electrical Engineering, Korea University, Seoul 02841, Republic of Korea.
Organic photodiodes (OPDs) are a significant focus for the next-generation of light-detection technologies. However, organic semiconductors in OPDs still face key challenges, such as low carrier mobilities and limited efficiency in generating photon-induced signals, which affect the detectable resolution and dynamic range. In this study, the characterization of the interaction between organic polymeric bulk heterojunctions and two-dimensional (2D) transition metal dichalcogenides (MoS) reveals an enhancement in photocurrent due to improved photogeneration dynamics (e.
View Article and Find Full Text PDFAnal Chem
January 2025
College of Chemistry, Jilin Province Research Center for Engineering and Technology of Spectral Analytical Instruments, Jilin University, Changchun 130012, China.
The early diagnosis of a disease relies on the reliable identification and quantitation of multiple core biomarkers in real-time point-of-care (POC) testing. To date, most of the multiplex photoelectrochemical (PEC) assays are inaccessible to home healthcare due to cumbersome steps, long testing time, and limited detection efficiency. The rapid and fast-response generation of independent photocurrent for multiple targets is still a great challenge.
View Article and Find Full Text PDFAnal Chim Acta
February 2025
Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, 250022, Jinan, PR China; Department of Chemistry, Sungkyunkwan University, 16419, Suwon, Republic of Korea. Electronic address:
Photoelectrochemical (PEC) immunosensors are highly promising tools for monitoring biochemical molecules. Constructing high-performance heterojunctions is a general method to improve the sensitivity of PEC immunosensors. The internal electric field (IEF) formed at the heterojunction interface plays a crucial role in coordinating the separation of photogenerated carriers.
View Article and Find Full Text PDFAnal Methods
January 2025
School of Pharmacy, Wannan Medical College, Wuhu 241002, China.
A label-free photoelectrochemical (PEC) sensor for detecting theophylline (TP) was exploited based on electrodes modified with a nanocomposite of polydopamine nanospheres (PDSs) and gold nanoparticles (AuNPs). PDS particles were prepared by oxidative autopolymerization, and their reducibility was utilized in one step to reduce the gold nanoparticles . The AuNPs-PDS/ZnS PEC sensor was constructed by electrochemical deposition and drop coating.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Physics, Government General Degree College Gopiballavpur-II, Jhargram 721517, India.
Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!