Hematopoietic cell transplantation (HCT) is often a last resort, but potentially curative treatment option for children suffering from hematological malignancies and a variety of non-malignant disorders, such as bone marrow failure, inborn metabolic disease or immune deficiencies. Although efficacy and safety of the HCT procedure has increased significantly over the last decades, the majority of the patients still suffer from severe acute toxicity, viral reactivation, acute or chronic graft-versus-host disease (GvHD) and/or, in case of malignant disease, relapses. Factors influencing HCT outcomes are numerous and versatile. For example, there is variation in the selected graft sources, type of infused cell subsets, cell doses, and the protocols used for conditioning, as well as immune suppression and treatment of adverse events. Moreover, recent pharmacokinetic studies show that medications used in the conditioning regimen (e.g., busulphan, fludarabine, anti-thymocyte globulin) should be dosed patient-specific to achieve optimal exposure in every individual patient. Due to this multitude of variables and site-specific policies/preferences, harmonization between HCT centers is still difficult to achieve. Literature shows that adequate immune recovery post-HCT limits both relapse and non-relapse mortality (death due to viral reactivations and GvHD). Monitoring immune parameters post-HCT may facilitate a timely prediction of outcome. The use of standardized assays to measure immune parameters would facilitate a fast comparison between different strategies tested in different centers or between different clinical trials. We here discuss immune cell markers that may contribute to clinical decision making and may be worth to standardize in multicenter collaborations for future trials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472532PMC
http://dx.doi.org/10.3389/fped.2020.00454DOI Listing

Publication Analysis

Top Keywords

hematopoietic cell
8
cell transplantation
8
immune parameters
8
immune
7
cell
5
immune monitoring
4
monitoring allogeneic
4
allogeneic hematopoietic
4
transplantation practical
4
practical guidelines
4

Similar Publications

Background: Over the past five years, the pregnancy rate in assisted reproductive technology (ART) programs in Russia has remained relatively stable. The aim of this study was to assess the distribution of monocyte and macrophage subsets in the blood and follicular fluid of infertile women undergoing assisted reproductive technology.

Methods: The study involved 45 women with a mean age of 35 ± 4.

View Article and Find Full Text PDF

The Impact of a Very-Low-Calorie Ketogenic Diet on Monocyte Subsets of Patients with Obesity: A Pilot Study.

Nutrients

January 2025

Department of Experimental Medicine, Section of Medical Pathophysiology, Food Science and Endocrinology, Sapienza University of Rome, 00161 Rome, Italy.

Obesity is closely linked to chronic low-grade inflammation and the development of cardio-metabolic comorbidities. Monocyte subsets, which are crucial in immune responses, have been reported to be altered in individuals with obesity, potentially exacerbating inflammation. Although very-low-calorie ketogenic diets (VLCKDs) are recognized for their efficacy in promoting weight loss and improving metabolic health, their impact on circulating monocyte subsets remains poorly understood.

View Article and Find Full Text PDF

Unrelated bone marrow transplantation (BMT) is a curative treatment for hematological malignancies. While HLA mismatch is a recognized risk factor in unrelated BMT, the significance of non-HLA single nucleotide polymorphisms (SNPs) remains uncertain. Cytokines play key roles in several aspects of unrelated BMT.

View Article and Find Full Text PDF

To identify the differences between aged and young human hematopoiesis, we performed a direct comparison of aged and young human hematopoietic stem and progenitor cells (HSPCs). Alterations in transcriptome profiles upon aging between humans and mice were then compared. Human specimens consist of CD34+ cells from bone marrow, and mouse specimens of hematopoietic stem cells (HSCs; Lin- Kit+ Sca1+ CD150+).

View Article and Find Full Text PDF

Human hematopoietic stem cells (HSCs) have traditionally been viewed as self-renewing, multipotent cells with enormous potential in sustaining essential steady state blood and immune cell production throughout life. Indeed, around 86% (10-10) of new cells generated daily in a healthy young human adult are of hematopoietic origin. Therapeutically, human HSCs have contributed to over 1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!