Objective: To develop and validate a radiomics model of diffusion kurtosis imaging (DKI) and T2 weighted imaging for discriminating pancreatic neuroendocrine tumors (PNETs) from solid pseudopapillary tumors (SPTs).

Materials And Methods: Sixty-six patients with histopathological confirmed PNETs ( = 31) and SPTs ( = 35) were enrolled in this study. ROIs of tumors were manually drawn on each slice at T2WI and DWI ( = 1,500 s/mm) from 3T MRI. Intraclass correlation coefficients were used to evaluate the interobserver agreement. Mean diffusivity (MD) and mean kurtosis (MK) were derived from DKI. The least absolute shrinkage and selection operator regression were used for feature selection.

Results: MD and MK had a moderate diagnostic performancewith the area under curve (AUC) of 0.71 and 0.65, respectively. A radiomics model, which incorporated sex and age of patients and radiomics signature of the tumor, showed excellent discrimination performance with AUC of 0.97 and 0.86 in the primary and validation cohort. Moreover, the new model had better diagnostic performance than that of MD ( = 0.023) and MK ( = 0.004), and showed excellent differentiation with a sensitivity of 95.00% and specificity of 91.67% in primary cohort, and the sensitivity of 90.91% and specificity of 81.82% in the validation cohort. The accuracy of radiomics analysis, radiologist 1, and radiologist 2 for diagnosing SPTs and PNETs were 92.42, 77.27, and 78.79%, respectively. The accuracy of radiomics analysis was significantly higher than that of subjective diagnosis ( < 0.05).

Conclusions: Radiomics model could improve the diagnostic accuracy of SPTs and PNETs and contribute to determining an appropriate treatment strategy for pancreatic tumors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7473210PMC
http://dx.doi.org/10.3389/fonc.2020.01624DOI Listing

Publication Analysis

Top Keywords

radiomics analysis
12
radiomics model
12
diffusion kurtosis
8
kurtosis imaging
8
weighted imaging
8
pancreatic neuroendocrine
8
neuroendocrine tumors
8
solid pseudopapillary
8
pseudopapillary tumors
8
validation cohort
8

Similar Publications

Kirsten Rat Sarcoma viral oncogene homolog (KRAS) is a frequently occurring mutation in non-small-cell lung cancer (NSCLC) and influences cancer treatment and disease progression. In this study, a machine learning (ML) pipeline was applied to radiomic features extracted from public and internal CT images to identify KRAS mutations in NSCLC patients. Both datasets were analyzed using parametric ( test) and non-parametric statistical tests (Mann-Whitney U test) and dimensionality reduction techniques.

View Article and Find Full Text PDF

Background/objectives: Accurate diagnosis is essential to avoid unnecessary procedures for thyroid incidentalomas (TIs). Advances in radiomics and machine learning applied to medical imaging offer promise for assessing thyroid nodules. This study utilized radiomics analysis on F-18 FDG PET/CT to improve preoperative differential diagnosis of TIs.

View Article and Find Full Text PDF

Background/objectives: In recent years, numerous studies have been published on determining the WHO grade of central nervous system (CNS) tumors using machine learning algorithms. These studies are usually based on magnetic resonance imaging (MRI) and sometimes also on positron emission tomography (PET) images. To date, however, there are virtually no corresponding studies based on routinely generated computed tomography (CT) images.

View Article and Find Full Text PDF

Objective: This study explores a semi-supervised learning (SSL), pseudo-labeled strategy using diverse datasets such as head and neck cancer (HNCa) to enhance lung cancer (LCa) survival outcome predictions, analyzing handcrafted and deep radiomic features (HRF/DRF) from PET/CT scans with hybrid machine learning systems (HMLSs).

Methods: We collected 199 LCa patients with both PET and CT images, obtained from TCIA and our local database, alongside 408 HNCa PET/CT images from TCIA. We extracted 215 HRFs and 1024 DRFs by PySERA and a 3D autoencoder, respectively, within the ViSERA 1.

View Article and Find Full Text PDF

Hypoxic-ischemic brain injury (HIBI) is a feared complication post-cardiac arrest (CA). The timing of brain imaging remains a topic of ongoing debate. Early computed tomography (CT) scans can reveal acute intracranial pathologies but may have limited predictive value due to delayed manifestation of HIBI-related changes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!