Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Antibiotics were derived originally from wild organisms and therefore understanding how these compounds evolve among different lineages might help with the design of new antimicrobial drugs. We report the draft genome sequence of Alexander Fleming's original fungal isolate behind the discovery of penicillin, now classified as Penicillium rubens Biourge (1923) (IMI 15378). We compare the structure of the genome and genes involved in penicillin synthesis with those in two 'high producing' industrial strains of P. rubens and the closely related species P. nalgiovense. The main effector genes for producing penicillin G (pcbAB, pcbC and penDE) show amino acid divergence between the Fleming strain and both industrial strains, whereas a suite of regulatory genes are conserved. Homologs of penicillin N effector genes cefD1 and cefD2 were also found and the latter displayed amino acid divergence between the Fleming strain and industrial strains. The draft assemblies contain several partial duplications of penicillin-pathway genes in all three P. rubens strains, to differing degrees, which we hypothesise might be involved in regulation of the pathway. The two industrial strains are identical in sequence across all effector and regulatory genes but differ in duplication of the pcbAB-pcbC-penDE complex and partial duplication of fragments of regulatory genes. We conclude that evolution in the wild encompassed both sequence changes of the effector genes and gene duplication, whereas human-mediated changes through mutagenesis and artificial selection led to duplication of the penicillin pathway genes.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515868 | PMC |
http://dx.doi.org/10.1038/s41598-020-72584-5 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!