AI Article Synopsis

  • The study investigates how reducing methane emissions in lactating cows affects their metabolism, which is crucial for acceptance of methane reduction practices by farmers.
  • Plasma samples from treated cows (with a methane-reducing feed additive) were analyzed and showed a 23% reduction in methane emissions without negatively impacting milk production or health indicators.
  • A total of 48 key metabolites were identified, some linked to microbial activity, indicating potential markers for methanogenesis, while others suggest a positive influence on the cows' amino acid and energy metabolism.

Article Abstract

There is scarce information on whether inhibition of rumen methanogenesis induces metabolic changes on the host ruminant. Understanding these possible changes is important for the acceptance of methane-reducing practices by producers. In this study we explored the changes in plasma profiles associated with the reduction of methane emissions. Plasma samples were collected from lactating primiparous Holstein cows fed the same diet with (Treated, n = 12) or without (Control, n = 13) an anti-methanogenic feed additive for six weeks. Daily methane emissions (CH, g/d) were reduced by 23% in the Treated group with no changes in milk production, feed intake, body weight, and biochemical indicators of health status. Plasma metabolome analyses were performed using untargeted [nuclear magnetic resonance (NMR) and liquid chromatography-mass spectrometry (LC-MS)] and targeted (LC-MS/MS) approaches. We identified 48 discriminant metabolites. Some metabolites mainly of microbial origin such as dimethylsulfone, formic acid and metabolites containing methylated groups like stachydrine, can be related to rumen methanogenesis and can potentially be used as markers. The other discriminant metabolites are produced by the host or have a mixed microbial-host origin. These metabolites, which increased in treated cows, belong to general pathways of amino acids and energy metabolism suggesting a systemic non-negative effect on the animal.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515923PMC
http://dx.doi.org/10.1038/s41598-020-72145-wDOI Listing

Publication Analysis

Top Keywords

changes plasma
8
plasma metabolome
8
rumen methanogenesis
8
methane emissions
8
discriminant metabolites
8
changes
5
metabolites
5
inhibition enteric
4
enteric methanogenesis
4
methanogenesis dairy
4

Similar Publications

Ebola virus (EBOV) causes severe disease in humans, with mortality as high as 90%. The small-molecule antiviral drug remdesivir (RDV) has demonstrated a survival benefit in EBOV-exposed rhesus macaques. Here, we characterize the efficacy of multiple intravenous RDV dosing regimens on survival of rhesus macaques 42 days after intramuscular EBOV exposure.

View Article and Find Full Text PDF

Severe fever with thrombocytopenia syndrome (SFTS) is an acute febrile illness caused by the SFTS virus (SFTSV). We conducted this study to propose a scientific evidence-based treatment that can improve prognosis through changes in viral load and inflammatory cytokines according to the specific treatment of SFTS patients. This prospective and observational study was conducted at 14 tertiary referral hospitals, which are located in SFTS endemic areas in Korea, from 1 May 2018 to 31 October 2020.

View Article and Find Full Text PDF

: Despite the known impact of propofol and remifentanil on hemodynamics and patient outcomes, there is a lack of comprehensive quantitative analysis, particularly in surgical settings, considering the influence of noxious stimuli. The aim of this study was to develop a quantitative semi-mechanistic population model that characterized the time course changes in mean arterial pressure (MAP) and heart rate (HR) due to the effects of propofol, remifentanil, and different types of noxious stimulation related to the clinical routine. : Data from a prospective study were used; the study analyzed the effects of propofol and remifentanil general anesthesia on female patients in physical status of I-II according to the American Society of Anesthesiologists (ASA I-II) undergoing gynecology surgery.

View Article and Find Full Text PDF

Background: Diphenhydramine is an anti-tussive used periodically to treat seasonal colds, contact dermatitis, and anaphylactic reactions. This study aimed to develop a physiologically based pharmacokinetic (PBPK) model of diphenhydramine in predicting its systemic exposure among healthy pediatrics (children and adolescents) by leveraging data files from adults (young and elderly).

Methods: The data profiles comprising serum/plasma concentration over time and parameters related to diphenhydramine were scrutinized via exhaustive literature analysis and consolidated in the PK-Sim software version 11.

View Article and Find Full Text PDF

Palbociclib, an oral CDK 4/6 inhibitor, was evaluated in a Pediatric Brain Tumor Consortium (PBTC) phase 1 (NCT02255461; PBTC-042) study to treat children and young adults with recurrent, progressive, or refractory brain tumors. The objectives of this study were to characterize the palbociclib population pharmacokinetics in children enrolled on PBTC-042, to conduct a population pharmacodynamic analysis in this patient population, and to perform a simulation study to assess the role of palbociclib exposure on neutropenia and thrombocytopenia. The palbociclib population pharmacokinetics and pharmacodynamics were characterized in this patient population (n = 34 patients; 4.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!