Dimethyl 3,3'-dithiobispropionimidate-functionalized diatomaceous earth particles for efficient biomolecule separation.

Sci Rep

Department of Convergence Medicine, Asan Medical Institute of Convergence Science and Technology (AMIST), University of Ulsan College of Medicine, Biomedical Engineering Research Center, Asan Institute of Life Sciences, Asan Medical Center, 05505, Seoul, Republic of Korea.

Published: September 2020

AI Article Synopsis

Article Abstract

The early diagnosis and monitoring of cancers are key factors in effective cancer treatment. Particularly, the separation of biomolecules is an essential step for both diagnostic and analytical purposes. However, the current techniques used to isolate biomolecules are intensive, laborious, and require multiple instruments as well as repeated sample preparations to separate each biomolecule. Thus, an efficient separation system that can simultaneously separate biomolecules from scarce samples is highly desirable. Hence, in this study, we developed a biosilica-based syringe filtration system for the efficient separation of biomolecules from cancer samples using amine-modified diatomaceous earth (AD) with dimethyl 3,3'-dithiobispropionimidate (DTBP). The syringe filter can be an efficient and rapid tool for use in various procedures without complex instruments. The DTBP-based AD system was combined with the syringe filter system for nucleic acid and protein separation from various cancer cells. We demonstrated the efficacy of the DTBP-based AD in a single-filter system for the efficient separation of DNA and proteins within 40 min. This DTBP-based AD syringe filter system showed good rapidity, efficiency, and affordability in the separation of biomolecules from single samples for the early diagnosis and clinical analysis of cancers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519118PMC
http://dx.doi.org/10.1038/s41598-020-72913-8DOI Listing

Publication Analysis

Top Keywords

separation biomolecules
12
efficient separation
12
syringe filter
12
diatomaceous earth
8
early diagnosis
8
system efficient
8
filter system
8
separation
7
system
6
efficient
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!