The social and environmental complexities of extracting energy transition metals.

Nat Commun

W.H. Bryan Mining & Geology Research Centre, Sustainable Minerals Institute, The University of Queensland, Saint Lucia, QLD, 4072, Australia.

Published: September 2020

Environmental, social and governance pressures should feature in future scenario planning about the transition to a low carbon future. As low-carbon energy technologies advance, markets are driving demand for energy transition metals. Increased extraction rates will augment the stress placed on people and the environment in extractive locations. To quantify this stress, we develop a set of global composite environmental, social and governance indicators, and examine mining projects across 20 metal commodities to identify the co-occurrence of environmental, social and governance risk factors. Our findings show that 84% of platinum resources and 70% of cobalt resources are located in high-risk contexts. Reflecting heightened demand, major metals like iron and copper are set to disturb more land. Jurisdictions extracting energy transition metals in low-risk contexts are positioned to develop and maintain safeguards against mining-related social and environmental risk factors.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7519138PMC
http://dx.doi.org/10.1038/s41467-020-18661-9DOI Listing

Publication Analysis

Top Keywords

energy transition
12
transition metals
12
environmental social
12
social governance
12
social environmental
8
extracting energy
8
risk factors
8
social
5
environmental complexities
4
complexities extracting
4

Similar Publications

Selecting Initial Conditions for Trajectory-Based Nonadiabatic Simulations.

Acc Chem Res

January 2025

Centre for Computational Chemistry, School of Chemistry, University of Bristol, Bristol BS8 1TS, United Kingdom.

ConspectusPhotochemical reactions have always been the source of a great deal of mystery. While classified as a type of chemical reaction, no doubts are allowed that the general tenets of ground-state chemistry do not directly apply to photochemical reactions. For a typical chemical reaction, understanding the critical points of the ground-state potential (free) energy surface and embedding them in a thermodynamics framework is often enough to infer reaction yields or characteristic time scales.

View Article and Find Full Text PDF

Ultrahigh Energy Storage Performance in BiFeO-Based Lead-Free Ceramics via Tuning Structural Homogeneity and Domain Engineering Strategies.

ACS Appl Mater Interfaces

January 2025

Inner Mongolia Key Laboratory of Advanced Ceramic Materials and Devices, School of Materials Science and Engineering, Inner Mongolia University of Science and Technology, Baotou 014010, China.

Lead-free ceramic-based dielectric capacitors are critical in electronics and environmental safety. Nevertheless, developing ideal lead-free ceramics with excellent energy storage properties remains a challenging task for practical applications. Herein, the enhanced relaxation behavior and increased breakdown electric field are utilized to realize the high energy storage behavior of (0.

View Article and Find Full Text PDF

Local Environment-Modulated f-f Transition in Unit-Cell-Sized Lanthanide Ultrathin Nanostructures.

ACS Nano

January 2025

Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, Haihe Laboratory of Sustainable Chemical Transformations, Smart Sensing Interdisciplinary Science Center, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin 300350, P. R. China.

The regulation of the f-f transition is the basis of utilizing the abundant optical properties of lanthanide (Ln), of which the key is to modulate the local environment of Ln ions. Here, we constructed Eu(III)-based unit-cell-sized ultrathin nanowires (UCNWs) with red luminescence and polymer-like behavior, which appears as an ideal carrier for regulating f-f transition. The f-f transition of Eu(III) in UCNWs could be precisely regulated through various ligands.

View Article and Find Full Text PDF

This study presents Born-Oppenheimer energies and transition dipole moments of the 36 lowest electronic states of the N2+ ion as a function of internuclear distance in the interval between 1.5 and 10 bohrs obtained in first-principles calculations. The electronic states are of the total electronic spin S = 1/2, 3/2, and 5/2, dissociating toward to the lowest four N(4S0) + N+(3P), N(2P0) + N+(3P), N(2D0) + N+(3P), and N(4S0) + N+(1D) dissociation limits.

View Article and Find Full Text PDF

Nelumbo nucifera, an aquatic crop cultivated throughout Asian countries, belongs to the Nelumbonaceae family and has been widely used in traditional medicines with key pharmacological activities such as anti-viral, antipyretic, antioxidant, anti-steroid, anti-inflammatory, anti-arrhythmia, anti-obesity, and anti-aging properties. The present study aims to explore and assess the phytochemical composition, GC-MS profiling, antioxidant efficacy, and the major phytoconstituent phytol subjected to theoretical spectroscopic characterization using the DFT method. The phytochemical profiling of N.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!