NhaA is a prototypical sodium-proton antiporter responsible for maintaining cellular ion and volume homeostasis by exchanging two protons for one sodium ion; despite two decades of research, the transport mechanism of NhaA remains poorly understood. Recent crystal structure and computational studies suggested Lys300 as a second proton-binding site; however, functional measurements of several K300 mutants demonstrated electrogenic transport, thereby casting doubt on the role of Lys300. To address the controversy, we carried out state-of-the-art continuous constant pH molecular dynamics simulations of NhaA mutants K300A, K300R, K300Q/D163N, and K300Q/D163N/D133A. Simulations suggested that K300 mutants maintain the electrogenic transport by utilizing an alternative proton-binding residue Asp133. Surprisingly, while Asp133 is solely responsible for binding the second proton in K300R, Asp133 and Asp163 jointly bind the second proton in K300A, and Asp133 and Asp164 jointly bind two protons in K300Q/D163N. Intriguingly, the coupling between Asp133 and Asp163 or Asp164 is enabled through the proton-coupled hydrogen-bonding network at the flexible intersection of two disrupted helices. These data resolve the controversy and highlight the intricacy of the compensatory transport mechanism of NhaA mutants. Alternative proton-binding site and proton sharing between distant aspartates may represent important general mechanisms of proton-coupled transport in secondary active transporters.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7568328PMC
http://dx.doi.org/10.1073/pnas.2005467117DOI Listing

Publication Analysis

Top Keywords

alternative proton-binding
12
proton-binding site
12
sodium-proton antiporter
8
transport mechanism
8
mechanism nhaa
8
k300 mutants
8
electrogenic transport
8
nhaa mutants
8
second proton
8
asp133 asp163
8

Similar Publications

The mechanism of mammalian proton-coupled peptide transporters.

Elife

July 2024

Structural Bioinformatics and Computational Biochemistry, Department of Biochemistry, University of Oxford, Oxford, United Kingdom.

Proton-coupled oligopeptide transporters (POTs) are of great pharmaceutical interest owing to their promiscuous substrate binding site that has been linked to improved oral bioavailability of several classes of drugs. Members of the POT family are conserved across all phylogenetic kingdoms and function by coupling peptide uptake to the proton electrochemical gradient. Cryo-EM structures and alphafold models have recently provided new insights into different conformational states of two mammalian POTs, SLC15A1, and SLC15A2.

View Article and Find Full Text PDF

A series of molecules that possess two quinolines, benzoquinolines, or phenanthrolines connected in a chiral fashion by a biaryl junction along with their water-soluble derivatives was developed and characterized. The influence of the structure on the basicity of the nitrogen atoms in two heterocycles was examined and the photophysical and chiroptical switching activity of the compounds upon protonation was studied both experimentally and computationally. The results demonstrated that changes in the electronic structure of the protonated vs.

View Article and Find Full Text PDF

Human monocarboxylate/H transporters, MCT, facilitate the transmembrane translocation of vital weak acid metabolites, mainly l-lactate. Tumors exhibiting a Warburg effect rely on MCT activity for l-lactate release. Recently, high-resolution MCT structures revealed binding sites for anticancer drug candidates and the substrate.

View Article and Find Full Text PDF

The homo-dimeric bacterial membrane protein EmrE effluxes polyaromatic cationic substrates in a proton-coupled manner to cause multidrug resistance. We recently determined the structure of substrate-bound EmrE in phospholipid bilayers by measuring hundreds of protein-ligand H-F distances for a fluorinated substrate, 4-fluoro-tetraphenylphosphonium (F-TPP), using solid-state NMR. This structure was solved at low pH where one of the two proton-binding Glu14 residues is protonated.

View Article and Find Full Text PDF

Proton-Binding Motifs of Membrane-Bound Proteins: From Bacteriorhodopsin to Spike Protein S.

Front Chem

May 2021

Freie Universität Berlin, Department of Physics, Theoretical Molecular Biophysics Group, Berlin, Germany.

Membrane-bound proteins that change protonation during function use specific protein groups to bind and transfer protons. Knowledge of the identity of the proton-binding groups is of paramount importance to decipher the reaction mechanism of the protein, and protonation states of prominent are studied extensively using experimental and computational approaches. Analyses of model transporters and receptors from different organisms, and with widely different biological functions, indicate common structure-sequence motifs at internal proton-binding sites.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!