Research Question: Proinflammatory advanced glycation end products (AGE), highly elevated within the uterine cavity of obese women, compromise endometrial function. Do AGE also impact preimplantation embryo development and function?
Design: Mouse embryos were cultured in AGE equimolar to uterine fluid concentrations in lean (1-2 µmol/l) or obese (4-8 µmol/l) women. Differential nuclear staining identified cell allocation to inner cell mass (ICM) and trophectoderm (TE) (day 4 and 5 of culture). Cell apoptosis was examined by terminal deoxynucleotidyl transferase-mediated dUDP nick-end labelling assay (day 5). Day 4 embryos were placed on bovine serum albumin/fibronectin-coated plates and embryo outgrowth assessed 93 h later as a marker of implantation potential. AGE effects on cell lineage allocation were reassessed following pharmacological interventions: either 12.5 nmol/l AGE receptor (RAGE) antagonist; 0.1 nmol/l metformin; or combination of 10 µmol/l acetyl-l-carnitine, 10 µmol/l N-acetyl-l-cysteine, and 5 µmol/l alpha-lipoic acid.
Results: 8 µmol/l AGE reduced: hatching rates (day 5, P < 0.01); total cell number (days 4, 5, P < 0.01); TE cell number (day 5, P < 0.01), and embryo outgrowth (P < 0.01). RAGE antagonism improved day 5 TE cell number.
Conclusions: AGE equimolar with the obese uterine environment detrimentally impact preimplantation embryo development. In natural cycles, prolonged exposure to AGE may developmentally compromise embryos, whereas following assisted reproductive technology cycles, placement of a high-quality embryo into an adverse 'high AGE' environment may impede implantation success. The modest impact of short-term RAGE antagonism on improving embryo outcomes indicates preconception AGE reduction via pharmacological or dietary intervention may improve reproductive outcomes for overweight/obese women.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.rbmo.2020.07.026 | DOI Listing |
Acta Pharm Sin B
December 2024
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, West China School of Pharmacy, Mental Health Center and National Chengdu Center for Safety Evaluation of Drugs, West China Hospital, Sichuan University, Chengdu 610041, China.
The neurovascular unit (NVU) is highly responsible for cerebral homeostasis and its dysfunction emerges as a critical contributor to Alzheimer's disease (AD) pathology. Hence, rescuing NVU dysfunction might be a viable approach to AD treatments. Here, we fabricated a self-regulated muti-functional nano-modulator (siR/PIO@RP) that can intelligently navigate to damaged blood-brain barrier and release therapeutical cargoes for synergetic AD therapy.
View Article and Find Full Text PDFMatrix Biol
February 2025
Department of Physics, Simon Fraser University, Burnaby, BC, V5A 1S6, Canada. Electronic address:
Advanced Glycation End Products (AGEs) are the end result of the irreversible, non-enzymatic glycation of proteins by reducing sugars. These chemical modifications accumulate with age and have been associated with various age-related and diabetic complications. AGEs predominantly accumulate on proteins with slow turnover rates, of which collagen is a prime example.
View Article and Find Full Text PDFBiomaterials
December 2024
State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:
Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis.
View Article and Find Full Text PDFJ Diabetes Res
January 2025
Diabetes Center, Dallah Hospital, Riyadh, Saudi Arabia.
The study was aimed at assessing the role of the MiniMed780G system of glycemic control before, during, and after Ramadan among people with Type 1 diabetes (PwT1D). This is a single-center retrospective analysis of MiniMed780G system users aged 14 years and above whose glycemic profiles were collected from February 21 to May 20, 2023, which corresponds to the Hijri months of Sha'ban, Ramadan, and Shawwal 1444/1445. Data was collected, processed, and analyzed in the framework of the Medtronic Galaxy service of the One Hospital Clinical Service (OHCS) program in Dallah Hospital, Riyadh, Saudi Arabia.
View Article and Find Full Text PDFChem Biol Interact
January 2025
Hebei Key Laboratory of Organ Fibrosis, School of Public Health, North China University of Science and Technology, Tangshan, Hebei 063210, China. Electronic address:
Epithelial-mesenchymal transition (EMT) is implicated in the pathogenesis of silicosis. High mobility group box 1 (HMGB1) has been found to induce EMT in fibrotic diseases. Previous studies have revealed a critical role of HMGB1 in silicosis, whereas the detail mechanisms still obscure.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!