All living cells sense and respond to changes in external or internal conditions. Without that cognitive capacity, they could not obtain nutrition essential for growth, survive inevitable ecological changes, or correct accidents in the complex processes of reproduction. Wherever examined, even the smallest living cells (prokaryotes) display sophisticated regulatory networks establishing appropriate adaptations to stress conditions that maximize the probability of survival. Supposedly "simple" prokaryotic organisms also display remarkable capabilities for intercellular signalling and multicellular coordination. These observations indicate that all living cells are cognitive.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bbrc.2020.08.120 | DOI Listing |
Neurochem Res
January 2025
College of Pharmacy, Guangxi Medical University, Guangxi Zhuang Autonomous Region, Nanning, 530021, China.
To study the neuronal protective effect and its potential mechanism of C16 against gp120-induced cognitive impairment in vitro and in vivo. The NORT method was used to evaluate the short-term memory abilities of rats, the morphological changes in hippocampus were observed by Nissl staining. Cell viability and damage degree were detected by MTT and LDH.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
Institute of Neurosciences, University of Barcelona, Barcelona, Catalunya, Spain.
Background: Senescence is a cellular response to stress or damage leading to a state of irreversible growth arrest. As we age, the number of senescent cells increases and directly contributes to age-related conditions including cancer and neurodegenerative diseases. As a result, there is a growing interest to therapeutically target senescence either with drugs eliminating senescent cells (senolytics) or with strategies to modulate their secretory phenotype among others.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
University of Michigan Medical School, Ann Arbor, MI, USA.
Background: The transfer of mitochondrial DNA into the nuclear genomes of eukaryotes (Numts) has been linked to lifespan in non-human species and recently demonstrated to occur in rare instances from one human generation to the next.
Method: Here we investigated numtogenesis dynamics in humans in two ways. First, we quantified Numts in 1,187 post-mortem brain and blood samples from different individuals.
Alzheimers Dement
December 2024
Case Western Reserve University, Cleveland, OH, USA.
Background: Even when patients carry disease-causing mutations their entire lives, they do not develop Alzheimer's disease (AD) until later in life. The reason for this loss of brain resilience is not known, and two of the greatest risk factors for developing AD are aging and traumatic brain injury (TBI). Unfortunately, there are currently no protective treatments for patients that prevent the development of AD.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
USC Keck School of Medicine, Los Angeles, CA, USA.
Background: Human Apolipoprotein (APOE) has three isoforms, ε2, ε3, and ε4 among which ε4 (APOE4) confers the highest risk for late-onset Alzheimer's disease (AD). APOE4 is also the most prone to aggregate among APOE isoforms. Current evidence strongly suggests that APOE aggregation leads to neuronal dysfunction and eventually to AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!