Bacterial infections in a pediatric cohort of primary and acquired complement deficiencies.

Pediatr Rheumatol Online J

Division of Rheumatology, Department of Pediatrics, University of Washington, Seattle, WA, 98101, USA.

Published: September 2020

Background: Acquired complement deficiency can occur in the setting of autoimmune syndromes, such as systemic lupus erythematosus (SLE), with very low or, occasionally, undetectable C3 levels. Based on inherited complement defects, patients with transiently low complement may be at similar risk for serious bacterial infection, but the degree of risk related to C3 level and temporal association is unknown.

Methods: We performed a retrospective study including pediatric patients with undetectable total complement activity or absent individual complement components measured at our institution from 2002 to 2018. We assessed annual rate of serious bacterial infection (SBI) defined as requiring hospitalization and/or parenteral antibiotics by manual chart review. Among included SLE patients, we assessed the 30-day probability of SBI for given C3 measurements using a logistic regression model to determine risk. Primary complement deficiency was analyzed for SBI rate as comparison. Covariates included age, level of immune suppression and history of lupus nephritis.

Results: Acquired complement deficiency secondary to SLE-related disease [n = 44] was the most common underlying diagnosis associated with depressed complement levels and were compared to a cohort of primary complement deficient patients [n = 18]. SBI per 100 person-years and cohort demographics were described in parallel. Our logistic regression analysis of pediatric patients with SLE showed low C3 level was temporally associated with having an SBI event. Given equivalent immunosuppression, patients with an SBI had lower C3 levels at the beginning of the observation period relative to patients without SBI.

Conclusion: Pediatric patients with the diagnosis of SLE can develop very low C3 levels that associate with risk of serious bacterial infection comparable to that of patients with primary complement deficiency. Patients prone to severe complement consumption may particularly be at risk.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513499PMC
http://dx.doi.org/10.1186/s12969-020-00467-0DOI Listing

Publication Analysis

Top Keywords

complement deficiency
16
complement
12
acquired complement
12
serious bacterial
12
bacterial infection
12
pediatric patients
12
primary complement
12
patients
10
cohort primary
8
sle low
8

Similar Publications

The membrane attack complex drives thrombotic microangiopathy in complement mediated atypical hemolytic uremic syndrome.

Kidney Int

January 2025

Complement Therapeutics Research Group, Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle-upon-Tyne, UK; National Renal Complement Therapeutics Centre, The Royal Victoria Infirmary, Newcastle-upon-Tyne, UK.

Introduction of complement (C) inhibition into clinical practice has revolutionized the treatment of patients with complement-mediated atypical hemolytic syndrome (aHUS). Our C3 mouse model, engineered around a gain of function point mutation in C3, is associated with complement mediated aHUS in man, allowing us to study the clinical disease in a preclinical model. Backcrossing our model onto C7 deficient and C5aR1 deficient mice enabled further determination of the roles of the C5a-C5aR1 axis and C5b-9 (the membrane attack complex) on kidney disease.

View Article and Find Full Text PDF

Monogenic lupus is an extremely rare clinical condition in children. Defects in the complement pathway are the most common causes of monogenic lupus. C1qC deficiency is one of the defects in this pathway and is even rarer.

View Article and Find Full Text PDF

Microglial double stranded DNA accumulation induced by DNase II deficiency drives neuroinflammation and neurodegeneration.

J Neuroinflammation

January 2025

State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.

Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.

View Article and Find Full Text PDF

Background: Iron deficiency (ID) is currently defined as a serum ferritin level <100 or 100 to 299 ng/mL with transferrin saturation (TSAT) <20%. Serum ferritin and TSAT are currently used to define absolute and functional ID. However, individual markers of iron metabolism may be more informative than current arbitrary definitions of ID.

View Article and Find Full Text PDF

Oxidative Stress Early After Hematopoietic Stem Cell Transplant.

Transplant Cell Ther

January 2025

Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH.

Background: HSCT conditioning regimens cause massive lysis of hematopoietic cells with release of toxic intracellular molecules into the circulation.

Objectives: To describe the response to oxidative stress early after hemopoietic stem cell transplantation (HSCT) and assess the association of early oxidative stress with later transplant outcomes.

Study Design: Key components of in the body's physiological response to oxidative stress were studied in a cohort of 122 consecutive pediatric allogeneic HSCT recipients.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!