Background: Acquired complement deficiency can occur in the setting of autoimmune syndromes, such as systemic lupus erythematosus (SLE), with very low or, occasionally, undetectable C3 levels. Based on inherited complement defects, patients with transiently low complement may be at similar risk for serious bacterial infection, but the degree of risk related to C3 level and temporal association is unknown.
Methods: We performed a retrospective study including pediatric patients with undetectable total complement activity or absent individual complement components measured at our institution from 2002 to 2018. We assessed annual rate of serious bacterial infection (SBI) defined as requiring hospitalization and/or parenteral antibiotics by manual chart review. Among included SLE patients, we assessed the 30-day probability of SBI for given C3 measurements using a logistic regression model to determine risk. Primary complement deficiency was analyzed for SBI rate as comparison. Covariates included age, level of immune suppression and history of lupus nephritis.
Results: Acquired complement deficiency secondary to SLE-related disease [n = 44] was the most common underlying diagnosis associated with depressed complement levels and were compared to a cohort of primary complement deficient patients [n = 18]. SBI per 100 person-years and cohort demographics were described in parallel. Our logistic regression analysis of pediatric patients with SLE showed low C3 level was temporally associated with having an SBI event. Given equivalent immunosuppression, patients with an SBI had lower C3 levels at the beginning of the observation period relative to patients without SBI.
Conclusion: Pediatric patients with the diagnosis of SLE can develop very low C3 levels that associate with risk of serious bacterial infection comparable to that of patients with primary complement deficiency. Patients prone to severe complement consumption may particularly be at risk.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513499 | PMC |
http://dx.doi.org/10.1186/s12969-020-00467-0 | DOI Listing |
Kidney Int
January 2025
Complement Therapeutics Research Group, Newcastle University Translational and Clinical Research Institute, The Medical School, Newcastle-upon-Tyne, UK; National Renal Complement Therapeutics Centre, The Royal Victoria Infirmary, Newcastle-upon-Tyne, UK.
Introduction of complement (C) inhibition into clinical practice has revolutionized the treatment of patients with complement-mediated atypical hemolytic syndrome (aHUS). Our C3 mouse model, engineered around a gain of function point mutation in C3, is associated with complement mediated aHUS in man, allowing us to study the clinical disease in a preclinical model. Backcrossing our model onto C7 deficient and C5aR1 deficient mice enabled further determination of the roles of the C5a-C5aR1 axis and C5b-9 (the membrane attack complex) on kidney disease.
View Article and Find Full Text PDFClin Rheumatol
January 2025
Department of Pediatric Rheumatology, Ankara Etlik City Hospital, Ankara, Turkey.
Monogenic lupus is an extremely rare clinical condition in children. Defects in the complement pathway are the most common causes of monogenic lupus. C1qC deficiency is one of the defects in this pathway and is even rarer.
View Article and Find Full Text PDFJ Neuroinflammation
January 2025
State Key Laboratory of Biopharmaceutical Preparation and Delivery, Institute of Process Engineering, Chinese Academy of Sciences, Haidian District, Beijing, 100190, China.
Background: Deoxyribonuclease 2 (DNase II) is pivotal in the clearance of cytoplasmic double stranded DNA (dsDNA). Its deficiency incurs DNA accumulation in cytoplasm, which is a hallmark of multiple neurodegenerative diseases. Our previous study showed that neuronal DNase II deficiency drove tau hyperphosphorylation and neurodegeneration (Li et al.
View Article and Find Full Text PDFCirc Heart Fail
January 2025
Hospital of the University of Pennsylvania, Philadelphia (S.G., J.D.A., B.P., M.J.D., O.S., O.E., P.Z., T.P.C., J.A.C.).
Background: Iron deficiency (ID) is currently defined as a serum ferritin level <100 or 100 to 299 ng/mL with transferrin saturation (TSAT) <20%. Serum ferritin and TSAT are currently used to define absolute and functional ID. However, individual markers of iron metabolism may be more informative than current arbitrary definitions of ID.
View Article and Find Full Text PDFTransplant Cell Ther
January 2025
Division of Bone Marrow Transplantation and Immune Deficiency, Cincinnati Children's Hospital Medical Center, Cincinnati, OH; Department of Pediatrics, University of Cincinnati, Cincinnati, OH.
Background: HSCT conditioning regimens cause massive lysis of hematopoietic cells with release of toxic intracellular molecules into the circulation.
Objectives: To describe the response to oxidative stress early after hemopoietic stem cell transplantation (HSCT) and assess the association of early oxidative stress with later transplant outcomes.
Study Design: Key components of in the body's physiological response to oxidative stress were studied in a cohort of 122 consecutive pediatric allogeneic HSCT recipients.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!