Antibacterial-Integrated Collagen Wound Dressing for Diabetes-Related Foot Ulcers: An Evidence-Based Review of Clinical Studies.

Polymers (Basel)

Centre for Tissue Engineering and Regenerative Medicine, UKM Medical Centre, Jalan Yaacob Latiff, Bandar Tun Razak, Cheras, Kuala Lumpur 56000, Malaysia.

Published: September 2020

Diabetic foot ulcer (DFU) is a chronic wound frequently delayed from severe infection. Wound dressing provides an essential barrier between the ulcer and the external environment. This review aimed to analyse the effectiveness of antibacterial collagen-based dressing for DFU treatment in a clinical setting. An electronic search in four databases, namely, Scopus, PubMed, Ovid MEDLINE(R), and ISI Web of Science, was performed to obtain relevant articles published within the last ten years. The published studies were included if they reported evidence of (1) collagen-based antibacterial dressing or (2) wound healing for diabetic ulcers, and (3) were written in English. Both randomised and non-randomised clinical trials were included. The search for relevant clinical studies () identified eight related references discussing the effectiveness of collagen-based antibacterial wound dressings for DFU comprising collagen impregnated with polyhexamethylene biguanide ( = 2), gentamicin ( = 3), combined-cellulose and silver ( = 1), gentian violet/methylene blue mixed ( = 1), and silver ( = 1). The clinical data were limited by small sample sizes and multiple aetiologies of chronic wounds. The evidence was not robust enough for a conclusive statement, although most of the studies reported positive outcomes for the use of collagen dressings loaded with antibacterial properties for DFU wound healing. This study emphasises the importance of having standardised clinical trials, larger sample sizes, and accurate reporting for reliable statistical evidence confirming DFU treatment efficiency.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7570079PMC
http://dx.doi.org/10.3390/polym12092168DOI Listing

Publication Analysis

Top Keywords

wound dressing
8
clinical studies
8
dfu treatment
8
collagen-based antibacterial
8
wound healing
8
clinical trials
8
sample sizes
8
wound
6
clinical
6
dfu
5

Similar Publications

In this work, microalgae-based zinc oxide nanoparticles loaded with electrospun polyvinyl alcohol (PVA)/sodium alginate (SA) nanofibers were fabricated by electro-spinner. PVA/SA fibrous mats were crosslinked by citric acid, which enhanced their thermal stability and swelling behavior. Green-synthesized ZnO NPs were laboratory synthesized and characterized by FTIR, XRD, EDX, SEM, TEM and TGA analyses.

View Article and Find Full Text PDF

Wound care presents an imposed financial burden for healthcare organizations, prompting the need for novel and cost-efficient dressings. In this study, we address this challenge by introducing a novel approach to fabricate antibacterial alginate-based fibrous materials using a combination of wet spinning and the wet-laying method, which offer advantages including structural and functional properties such as breathability, nontoxicity, biocompatibility, and cost-effectiveness. The wet spinning method was employed to develop porous and non-porous Ca-alginate fibers with diameters of 100 ± 4.

View Article and Find Full Text PDF

Antioxidant effects of Gastrodia elata polysaccharide-based hydrogels loaded with puerarin/gelatin microspheres for D-galactose-induced aging-skin wound healing.

Int J Biol Macromol

January 2025

College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun 130118, China; Jilin Provincial Science and Technology Innovation Center of Health Products and Medical Materials with Characteristic Resources, Jilin Agricultural University, Changchun 130118, China. Electronic address:

The healing of wounds in aging skin is a challenging issue that has not been thoroughly studied. Composite hydrogels made from natural polysaccharides have shown potential as dressings for various types of wounds. In this study, we prepared a polysaccharide-based composite hydrogel to provide a new strategy for treating aging skin wounds.

View Article and Find Full Text PDF

Gelatinase-responsive core-shell nanofiber membranes for anti-adhesion applications.

Int J Biol Macromol

January 2025

MOE Key Laboratory of Advanced Textile Materials & Manufacturing Technology, Zhejiang Sci-Tech University, Hangzhou 310018, China. Electronic address:

Dressings are prone to adhering to new tissues, leading to secondary harm to the wound during dressing replacement. To address this issue, many strategies have been proposed to endow dressings with anti-adhesive functions. However, the introduction of exogenous agents or stimuli is always needed, and difficulty in achieving adaptive removal is also present.

View Article and Find Full Text PDF

Herbal micelles-loaded ROS-responsive hydrogel with immunomodulation and microenvironment reconstruction for diabetic wound healing.

Biomaterials

December 2024

State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing 100029, China. Electronic address:

Persistent inflammation is a major cause of diabetic wounds that are difficult to heal. This is manifested in diabetic wounds with excessive reactive oxygen clusters (ROS), advanced glycation end products (AGE) and other inflammatory factors, and difficulty in polarizing macrophages toward inhibiting inflammation. Berberine is a natural plant molecule that inhibits inflammation; however, its low solubility limits its biological function through cytosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!