Autoimmunity in plants has been found in numerous hybrids as a form of hybrid necrosis and mutant panels. Uncontrolled cell death is a main cellular outcome of autoimmunity, which negatively impacts growth. Its occurrence highlights the vulnerable nature of the plant immune system. Genetic investigation of autoimmunity in hybrid plants revealed that extreme variation in the immune receptor repertoire is a major contributor, reflecting an evolutionary conundrum that plants face in nature. In this review, we discuss natural variation in the plant immune system and its contribution to fitness. The value of autoimmunity genetics lies in its ability to identify combinations of a natural immune receptor and its partner that are predisposed to triggering autoimmunity. The network of immune components for autoimmunity becomes instrumental in revealing mechanistic details of how immune receptors recognize cellular invasion and activate signaling. The list of autoimmunity-risk variants also allows us to infer evolutionary processes contributing to their maintenance in the natural population. Our approach to autoimmunity, which integrates mechanistic understanding and evolutionary genetics, has the potential to serve as a prognosis tool to optimize immunity in crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.16947 | DOI Listing |
Cell Mol Gastroenterol Hepatol
January 2025
Division of Biomedical Sciences, School of Medicine, University of California Riverside, Riverside, California, USA. Electronic address:
Background: Coronavirus disease (COVID-19), caused by SARS-CoV-2, triggered a global pandemic with severe medical and socioeconomic consequences. While fatality rates are higher among the elderly and those with underlying comorbidities, host factors that promote susceptibility to SARS-CoV-2 infection and severe disease are poorly understood. Although individuals with certain autoimmune/inflammatory disorders show increased susceptibility to viral infections, there is incomplete knowledge of SARS-CoV-2 susceptibility in these diseases.
View Article and Find Full Text PDFDrug Dev Res
February 2025
Department of Pharmaceutics, Shree S. K. Patel College of Pharmaceutical Education and Research, Ganpat University, Mehsana, India.
The central nervous system is affected by multiple sclerosis (MS), a chronic autoimmune illness characterized by axonal destruction, demyelination, and inflammation. This article summarizes the state of the field, highlighting its complexity and significant influence on people's quality of life. The research employs a network pharmacological approach, integrating systems biology, bioinformatics, and pharmacology to identify biomarkers associated with MS.
View Article and Find Full Text PDFPhytother Res
January 2025
School of Chemical Engineering and Physical Sciences, Lovely Professional University, Phagwara, India.
Psoriasis is a noncontagious, autoimmune chronic inflammatory disease with an unknown root cause. It is classified as a multifactorial and chronic skin disorder that also affects the immune system and is genetic. Environmental factors such as stress, infections, and injuries all play an important role in the disease's development.
View Article and Find Full Text PDFFront Immunol
January 2025
VIB-UGent Center for Inflammation Research, VIB, Ghent, Belgium.
Introduction: Over the past few decades, there has been a sudden rise in the incidence of Multiple Sclerosis (MS) in Western countries. However, current treatments often show limited efficacy in certain patients and are associated with adverse effects, which highlights the need for safer and more effective therapeutic approaches. Environmental factors, particularly dietary habits, have been observed to play a substantial role in the development of MS.
View Article and Find Full Text PDFFront Pharmacol
December 2024
Department of Pharmacy, University of Agriculture, Faisalabad, Pakistan.
Introduction: Rheumatoid arthritis is an autoimmune disease that mainly causes joint damage. The patient experiences loss of appetite, pain, fever, and fatigue. The present study was designed to phytochemically characterize and evaluate the anti-arthritic activity of green-synthesized copper oxide (CuO) nanoparticles (NPs) using the hydroalcoholic extract of roots in an adjuvant-induced arthritic rat model.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!