Low productivity and climate change require climate-smart agriculture (CSA) for sub-Saharan Africa (SSA), through (i) sustainably increasing crop productivity, (ii) enhancing the resilience of agricultural systems, and (iii) offsetting greenhouse gas emissions. We conducted a meta-analysis on experimental data to evaluate the contributions of combining organic and mineral nitrogen (N) applications to the three pillars of CSA for maize (Zea mays). Linear mixed effect modeling was carried out for; (i) grain productivity and agronomic efficiency of N (AE) inputs, (ii) inter-seasonal yield variability, and (iii) changes in soil organic carbon (SOC) content, while accounting for the quality of organic amendments and total N rates. Results showed that combined application of mineral and organic fertilizers leads to greater responses in productivity and AE as compared to sole applications when more than 100 kg N ha-1 is used with high-quality organic matter. For yield variability and SOC, no significant interactions were found when combining mineral and organic fertilizers. The variability of maize yields in soils amended with high-quality organic matter, except manure, was equal or smaller than for sole mineral fertilizer. Increases of SOC were only significant for organic inputs, and more pronounced for high-quality resources. For example, at a total N rate of 150 kg N ha-1 season-1, combining mineral fertilizer with the highest quality organic resources (50:50) increased AE by 20% and reduced SOC losses by 18% over 7 growing seasons as compared to sole mineral fertilizer. We conclude that combining organic and mineral N fertilizers can have significant positive effects on productivity and AE, but only improves the other two CSA pillars yield variability and SOC depending on organic resource input and quality. The findings of our meta-analysis help to tailor a climate smart integrated soil fertility management in SSA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514003PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0239552PLOS

Publication Analysis

Top Keywords

combining organic
12
organic mineral
12
yield variability
12
mineral fertilizer
12
organic
11
mineral
8
mineral fertilizers
8
integrated soil
8
soil fertility
8
fertility management
8

Similar Publications

Lactiplantibacillus plantarum P101 Alleviates Liver Toxicity of Combined Microplastics and Di-(2-Ethylhexyl) Phthalate via Regulating Gut Microbiota.

Probiotics Antimicrob Proteins

January 2025

State Key Laboratory of Food Science and Resources, Nanchang University, 235 Nanjing East Road, Nanchang, 330047, China.

Microplastics (MPs) and Di-(2-ethylhexyl) phthalate (DEHP) as emerging contaminants, have caused increasing concern due to their co-exposure risks and toxicities to humans. Lactic acid bacteria have been demonstrated to play a significant role in the mitigation of organismal damage. Probiotic intervention is widely recognized as a safe and healthy therapeutic strategy for targeting the mitigation of organic damage.

View Article and Find Full Text PDF

Agricultural production costs represent less than half of total food prices for higher-income countries and will likely further decrease globally. Added-value components such as transport, processing, marketing and catering show increasing importance in food value chains, especially as countries undergo a nutrition transition towards more complex and industrial food systems. Here, using a combined statistical and process-based modelling framework, we derive and project the value-added component of food prices for 136 countries and 11 different food groups, for food-at-home and food-away-from-home.

View Article and Find Full Text PDF

Land Surface Temperature (LST) is widely recognized as a sensitive indicator of climate change, and it plays a significant role in ecological research. The ERA5-Land LST dataset, developed and managed by the European Centre for Medium-Range Weather Forecasts (ECMWF), is extensively used for global or regional LST studies. However, its fine-scale application is limited by its low spatial resolution.

View Article and Find Full Text PDF

Targeted metabolomics reveals novel diagnostic biomarkers for colorectal cancer.

Mol Oncol

January 2025

Shanghai Stomatological Hospital & School of Stomatology & Institutes of Biomedical Sciences, Fudan University, Shanghai, China.

Colorectal cancer (CRC) is a prevalent malignant tumor worldwide, with a high mortality rate due to its complex etiology and limited early screening techniques. This study aimed to identify potential biomarkers for early detection of CRC utilizing targeted metabolite profiling of platelet-rich plasma (PRP). Based on multiple reaction monitoring (MRM) mode, liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis identified metabolites in PRP collected from patients with CRC (n = 70) and healthy controls (n = 30).

View Article and Find Full Text PDF

Determination and validation of polycyclic aromatic hydrocarbons (PAH4) in katsuobushi, plant-based food supplements, and cocoa bean shells using GC-MS/MS.

J Food Drug Anal

December 2024

Division of Research and Analysis, Taiwan Food and Drug Administration, Ministry of Health and Welfare, No.161-2, Kunyang St, Nangang District, Taipei City 11561, Taiwan, R.O.C.

Polycyclic aromatic hydrocarbons (PAHs) are primarily generated through the incomplete combustion or pyrolysis of organic materials in various industrial processes. Foods may become contaminated with environmental PAHs found in air, soil, or water, or through industrial food processing methods such as smoking, roasting, drying, and grilling. The Ministry of Health and Welfare in Taiwan has established maximum levels for benzo[a]pyrene (BaP) and indicative values for BaP as well as PAH4 (the sum of benz[a]anthracene, chrysene, benzo[b]fluoranthene, and benzo[a]pyrene) in foods as operational guidelines.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!