Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Petrochemical wastewater is difficult to process because of various types of pollutants with high toxicity. With the improvement in the national discharge standard, traditional biochemical treatment methods may not meet the standards and further advanced treatment techniques would be required. In this study, electrochemical oxidation with boron doped diamond (BDD) anode as post-treatment was carried out for the treatment of real biotreated petrochemical wastewater. The effects of current density, pH value, agitation rate, and anode materials on chemical oxygen demand (COD) removal and current efficiency were studied. The results revealed the appropriate conditions to be a current density of 10 mA·cm, a pH value of 3, and an agitation rate of 400 rpm. Moreover, as compared with the graphite electrode, the BDD electrode had a higher oxidation efficiency and COD removal efficiency. Furthermore, GC-MS was used to analyze the final degradation products, in which ammonium chloride, formic acid, acetic acid, and malonic acid were detected. Finally, the energy consumption was estimated to be 6.24 kWh·m with a final COD of 30.2 mg·L at a current density of 10 mA·cm without the addition of extra substances. This study provides an alternative for the upgrading of petrochemical wastewater treatment plants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.2166/wst.2020.387 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!