Amorphous polymer-derived silicon oxycarbide (SiOC) is an attractive candidate for Li-ion battery anodes, as an alternative to graphite, which is limited to a theoretical capacity of 372 mAh/g. However, SiOC tends to exhibit poor transport properties and cycling performance as a result of sparsely distributed carbon clusters and inefficient active sites. To overcome these limitations, we designed and fabricated a layered graphene/SiOC heterostructure by solvent-assisted infiltration of a polymeric precursor into a modified three-dimensional (3D) graphene aerogel skeleton. The use of a high-melting-point solvent facilitated the precursor's freeze drying, which following pyrolysis yielded SiOC as a layer supported on the surface of nitrogen-doped reduced graphene oxide aerogels. The fabrication method employed here modifies the composition and microstructure of the SiOC phase. Among the studied materials, the highest levels of performance were obtained for a sample of moderate SiOC content, in which the graphene network constituted 19.8 wt % of the system. In these materials, a stable reversible charge capacity of 751 mAh/g was achieved at low charge rates. At high charge rates of 1480 mA/g, the capacity retention was ∼95% (352 mAh/g) after 1000 consecutive cycles. At all rates, Coulombic efficiencies >99% were maintained following the first cycle. Performance across all indicators was majorly improved in the graphene aerogel/SiOC nanocomposites, compared with unsupported SiOC. The performance was attributed to mechanisms across multiple length scales. The presence of oxygen-rich SiOC tetrahedral units and a continuous free-carbon network within the SiOC provides sites for reversible lithiation, while high ionic and electronic transport is provided by the layered graphene/SiOC heterostructure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acsami.0c12376 | DOI Listing |
Adv Mater
December 2024
MOE Key Laboratory of Macromolecular Synthesis and Functionalization, International Research Center for X Polymers, Department of Polymer Science and Engineering, Zhejiang University, 38 Zheda Road, Hangzhou, 310027, China.
Lightweight cellular materials with high stiffness and excellent recoverability are critically important in structural engineering applications, but the intrinsic conflict between these two properties presents a significant challenge. Here, a topological cellular hierarchy is presented, designed to fabricate ultra-stiff (>10 MPa modulus) yet super-elastic (>90% recoverable strain) graphene aerogels. This topological cellular hierarchy, composed of massive corrugated pores and nanowalls, is designed to carry high loads through predominantly reversible buckling within the honeycomb framework.
View Article and Find Full Text PDFAdv Mater
December 2024
Laboratory for Multiscale Mechanics and Medical Science, SV LAB, School of Aerospace, Xi'an Jiaotong University, Xi'an, 710049, China.
Despite fatigue free of monolayer graphene, its assemblies, like cellular graphene aerogels (CGA), are usually suffering of frequent fatigue and inherent strength degradation in repeated loading. In this work, by employing multiscale modeling, the highly intrinsic anisotropic mechanical properties of the cell wall due to the layer-by-layer stacked graphene sheets are uncovered, which easily trigger the unique skeleton joints damage during repeated loading and contribute the primary fatigue mechanism of CGA. Conversely, multiscale joint strengthening strategies are proposed by interlayer crosslinking and joint curvation, improving the interlayer interaction, and decreasing interlayer stress during compression, respectively, so as to effectively suppress joint damage to improve fatigue performance of CGA.
View Article and Find Full Text PDFJ Colloid Interface Sci
December 2024
Liaoning Province Key Laboratory of Pulp and Papermaking Engineering, Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, Dalian Polytechnic University, Dalian, Liaoning Province, 116034, China; Shandong Tonye Photoresist Material Technology CO., LTD, Weifang, 261206, China. Electronic address:
Molecules
November 2024
Department of Basic and Applied Sciences for Engineering (SBAI), Sapienza University of Rome, Via A. Scarpa 14, 00161 Rome, Italy.
Carbon nanostructures are highly promising materials for applications in a variety of different fields. Besides their interesting performances, the possibility to synthesize them from biowaste makes them an eco-friendly resource widely exploitable within a circular economy context. The present work deals with the green, one-pot synthesis of graphene quantum dots (GQDs) from carbon aerogels (CAs) derived from rice husk (RH).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, China.
Benefiting from its abundance, eco-friendliness, and sustainability, crop straw is considered a promising candidate combined with graphene oxide (GO) to fabricate straw-based graphene aerogels (SGAs) for oil/water separation. However, considering the complex composition of straw, the roles played by different crude fibers in straw in the formation of SGAs are still unclear. Herein, wheat straw (WS) was used in this work and pretreated with acid and alkali to regulate its crude fiber fractions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!