Vacancies in Self-Assembled Crystals: An Archetype for Clusters Statistics at the Nanoscale.

Small

Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones Científicas (CSIC) Calle Sor Juana Inés de la Cruz 3, Madrid, E-28049, Spain.

Published: October 2020

Complex systems involving networks have attracted strong multidisciplinary attention since they are predicted to sustain fascinating phase transitions in the proximity of the percolation threshold. Developing stable and compact archetypes that allow one to experimentally study physical properties around the percolation threshold remains a major challenge. In nanoscale systems, this achievement is rare since it is tied to the ability to control the intentional disorder and perform a vast statistical analysis of cluster configurations. Here, a self-assembly method to fabricate perfectly ordered structures where random defects can be introduced is presented. Building binary crystals from two types of dielectric nanospheres and selectively removing one of them creates vacancies at random lattice positions that form a complex network of clusters. Vacancy content can be easily controlled and raised even beyond the percolation threshold. In these structures, the distribution of cluster sizes as a function of vacancy density is analyzed. For moderate concentrations, it is found to be homogeneous throughout the structure and in good agreement with the assumption of a random vacancy distribution.

Download full-text PDF

Source
http://dx.doi.org/10.1002/smll.202002735DOI Listing

Publication Analysis

Top Keywords

percolation threshold
12
vacancies self-assembled
4
self-assembled crystals
4
crystals archetype
4
archetype clusters
4
clusters statistics
4
statistics nanoscale
4
nanoscale complex
4
complex systems
4
systems involving
4

Similar Publications

Colloidal gels, ubiquitous in industrial applications, can undergo reversible solid-to-liquid transitions. Recent work demonstrates that adding surface roughness to primary particles enhances the toughness and influences the self-healing properties of colloidal gels. In the present work, we first use colloidal probe atomic force microscopy (CP-AFM) to assess the quantitative changes in adhesive and frictional forces between thermoresponsive particles as a function of their roughness.

View Article and Find Full Text PDF

This paper explores the electrical conductivity interphase of Ag/Epoxy composite using modified McLachlan theory and 3D finite element composite model through experimental verification. The model characteristic presents conductivity as a dynamic function influenced by particle content, particle electrical properties, electrical properties transition, and an exponent. This model was meticulously crafted, considering the intricate interplay between the polymer matrix and silver particles, the tunnelling distance between adjacent silver particles, and the interphase regions around particles.

View Article and Find Full Text PDF

Uniaxial compression experiments were conducted on coal rock utilizing a computed tomography (CT) scanning system for real-time monitoring to explain the issue of gas volume significantly exceeding reservoir capacity during coal and gas outbursts. A percolation factor a which can make a significant contribution to the research on premonitory information of gas outbursts is introduced to determine whether percolation occurs in coal rock, and supports the outburst percolation theory. It was found that percolation probability and correlation length increase with greater porosity, and that the number of pore clusters decreases as porosity increases.

View Article and Find Full Text PDF

Transitions seen in the electric properties of water-absorbable poly(2,5-benzimidazole) (ABPBI) films were confirmed by electric conductivity, dielectric constant, and time-domain nuclear magnetic resonance (NMR) measurements. The electric resistance of the films was measured at room temperature using a high-resistance meter, and the dielectric constant at room temperature was measured using an LCR meter in the frequency range of 90 Hz to 8 MHz. The water absorption ratio at equilibrium absorption for the films was 37%, which corresponded to a volume fraction of water of 0.

View Article and Find Full Text PDF

Multifunctional polymer composites containing micro/nano hybrid reinforcements have attracted intensive attention in the field of materials science and engineering. This paper develops a multi-phase analytical model for investigating the effective electrical conductivity of micro-silicon carbide (SiC) whisker/nano-carbon black (CB) polymer composites. First, CB nanoparticles are dispersed within the non-conducting epoxy to achieve a conductive CB-filled nanocomposite and its electrical conductivity is predicted.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!