AtMYB2 protein represses the formation of axillary meristems in response to environmental stresses so that plants can undergo a shorter vegetative development stage under environmental stresses. Shoot branching is an important event determined by endogenous factors during the development of plants. The formation of axillary meristem is also significantly repressed by environmental stresses and the underlying mechanism is largely unknown. The REGULATOR OF AXILLARY MERISTEMS (RAX) genes encode the R2R3 MYB transcription factors that have been shown to regulate the formation of axillary meristems in Arabidopsis. The AtMYB2 is also a member of R2R3 MYB gene family whose expression is usually induced by the environmental stresses. In this study, our results showed that AtMYB2 protein plays a pivotal negative regulatory role in the formation of axillary meristem. AtMYB2 is mainly expressed in the leaf axils as that of RAX1. The environmental stresses can increase the expression of AtMYB2 protein which further inhibits the expression of RAX1 gene by binding to its promoter. Therefore, AtMYB2 protein represses the formation of axillary meristems in response to environmental stresses so that plants can undergo a shorter vegetative development stage under environmental stresses.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00299-020-02602-3 | DOI Listing |
J Nurs Adm
December 2024
Author Affiliations: Research Associate (Dr Keys), The Center for Health Design, Concord, California; National Senior Director (Dr Fineout-Overholt), Evidence-Based Practice and Implementation Science, at Ascension in St. Louis, MO.
Objective: Relationships among coworker and patient visibility, reactions to physical work environment, and work stress in ICU nurses are explored.
Background: Millions of dollars are invested annually in the building or remodeling of ICUs, yet there is a gap in understanding relationships between the physical layout of nursing units and work stress.
Methods: Using a cross-sectional, correlational, exploratory, predictive design, relationships among variables were studied in a diverse sample of ICU nurses.
Proc Natl Acad Sci U S A
January 2025
Institut Langevin, École Supérieure de Physique et de Chimie Industrielles de la Ville de Paris, Université Paris Sciences & Lettres, CNRS, Paris 7587, France.
Understanding the dynamic response of granular shear zones under cyclic loading is fundamental to elucidating the mechanisms triggering earthquake-induced landslides, with implications for broader fields such as seismology and granular physics. Existing prediction methods struggle to accurately predict many experimental and in situ landslide observations due to inadequate consideration of the underlying physical mechanisms. The mechanisms that influence landslide dynamic triggering, a transition from static (or extremely slow creeping) to rapid runout, remain elusive.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Chinese Academy of Sciences Key Laboratory of Tropical Marine Bio Resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, Guangdong Provincial Observation and Research Station for Coastal Upwelling Ecosystem, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 511458, China.
Rotation of the bacterial flagellum, the first identified biological rotary machine, is driven by its stator units. Knowledge gained about the function of stator units has increasingly led to studies of rotary complexes in different cellular pathways. Here, we report that a tetrameric PilZ family protein, FlgX, is a structural component underneath the stator units in the flagellar motor of .
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.
While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.
View Article and Find Full Text PDFPLoS Genet
January 2025
Génétique Quantitative et Evolution - Le Moulon, INRAE, CNRS, AgroParisTech, Université Paris-Saclay, Gif-sur-Yvette, France.
Elucidating the genetic components of plant genotype-by-environment interactions is of key importance in the context of increasing climatic instability, diversification of agricultural practices and pest pressure due to phytosanitary treatment limitations. The genotypic response to environmental stresses can be investigated through multi-environment trials (METs). However, genome-wide association studies (GWAS) of MET data are significantly more complex than that of single environments.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!