https://eutils.ncbi.nlm.nih.gov/entrez/eutils/efetch.fcgi?db=pubmed&id=32969561&retmode=xml&tool=Litmetric&email=readroberts32@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09 329695612021041420210414
1365-248626122020DecGlobal change biologyGlob Chang BiolSecondary forests offset less than 10% of deforestation-mediated carbon emissions in the Brazilian Amazon.700670207006-702010.1111/gcb.15352Secondary forests are increasing in the Brazilian Amazon and have been cited as an important mechanism for reducing net carbon emissions. However, our understanding of the contribution of secondary forests to the Amazonian carbon balance is incomplete, and it is unclear to what extent emissions from old-growth deforestation have been offset by secondary forest growth. Using MapBiomas 3.1 and recently refined IPCC carbon sequestration estimates, we mapped the age and extent of secondary forests in the Brazilian Amazon and estimated their role in offsetting old-growth deforestation emissions since 1985. We also assessed whether secondary forests in the Brazilian Amazon are growing in conditions favourable for carbon accumulation in relation to a suite of climatic, landscape and local factors. In 2017, the 129,361 km2 of secondary forest in the Brazilian Amazon stored 0.33 ± 0.05 billion Mg of above-ground carbon but had offset just 9.37% of old-growth emissions since 1985. However, we find that the majority of Brazilian secondary forests are situated in contexts that are less favourable for carbon accumulation than the biome average. Our results demonstrate that old-growth forest loss remains the most important factor determining the carbon balance in the Brazilian Amazon. Understanding the implications of these findings will be essential for improving estimates of secondary forest carbon sequestration potential. More accurate quantification of secondary forest carbon stocks will support the production of appropriate management proposals that can efficiently harness the potential of secondary forests as a low-cost, nature-based tool for mitigating climate change.© 2020 The Authors. Global Change Biology published by John Wiley & Sons Ltd.SmithCharlotte CCC0000-0002-3767-6587Lancaster Environment Centre, Lancaster University, Lancaster, UK.Espírito-SantoFernando D BFDBLeicester Institute of Space and Earth Observation, Centre for Landscape and Climate Research, School of Geography, Geology and Environment, University of Leicester, Leicester, UK.HealeyJohn RJRSchool of Natural Sciences, College of Environmental Sciences and Engineering, Bangor University, Bangor, UK.YoungPaul JPJLancaster Environment Centre, Lancaster University, Lancaster, UK.Centre of Excellence for Environmental Data Science, Lancaster University, Lancaster, UK.LennoxGareth DGD0000-0002-4285-0551Lancaster Environment Centre, Lancaster University, Lancaster, UK.FerreiraJoiceJEmbrapa Amazônia Oriental, Belém, Brazil.BarlowJosJLancaster Environment Centre, Lancaster University, Lancaster, UK.Federal University of Lavras, Minas Gerais, Brazil.engNE/L002604/1Natural Environment Research CouncilJournal Article20201011
EnglandGlob Chang Biol98887461354-10137440-44-0CarbonIMBrazilCarbonanalysisCarbon SequestrationConservation of Natural ResourcesForestscarbon sequestrationclimate changeforest regenerationhuman-modified landscapesnegative emissionssecondary vegetationtropical forests
2020632020912020925602021415602020924850ppublish3296956110.1111/gcb.15352REFERENCESAchard, F., Eva, H. D., Stibig, H.-J., Mayaux, P., Gallego, J., Richards, T., & Malingreau, J.-P. (2002). Determination of deforestation rates of the world’s humid tropical forests. Science, 297(5583), 999-1002. https://doi.org/10.1126/science.1070656Aide, T. M., Clark, M. L., Grau, H. R., López-Carr, D., Levy, M. A., Redo, D., Bonilla-Moheno, M., Riner, G., Andrade-Núñez, M. J., & Muñiz, M. (2013). Deforestation and reforestation of Latin America and the Caribbean (2001-2010). Biotropica, 45(2), 262-271. https://doi.org/10.1111/j.1744-7429.2012.00908.xAlmeida, D. R. A., Stark, S. C., Chazdon, R., Nelson, B. W., Cesar, R. G., Meli, P., Gorgens, E. B., Duarte, M. M., Valbuena, R., Moreno, V. S., Mendes, A. F., Amazonas, N., Gonçalves, N. B., Silva, C. A., Schietti, J., & Brancalion, P. H. S. (2019). The effectiveness of lidar remote sensing for monitoring forest cover attributes and landscape restoration. Forest Ecology and Management, 438, 34-43. https://doi.org/10.1016/j.foreco.2019.02.002Avitabile, V., Herold, M., Heuvelink, G. B. M., Lewis, S. L., Phillips, O. L., Asner, G. P., Armston, J., Ashton, P. S., Banin, L., Bayol, N., Berry, N. J., Boeckx, P., de Jong, B. H. J., DeVries, B., Girardin, C. A. J., Kearsley, E., Lindsell, J. A., Lopez-Gonzalez, G., Lucas, R., … Willcock, S. (2016). An integrated pan-tropical biomass map using multiple reference datasets. Global Change Biology, 22(4), 1406-1420. https://doi.org/10.1111/gcb.13139Baccini, A., Goetz, S. J., Walker, W. S., Laporte, N. T., Sun, M., Sulla-Menashe, D., Hackler, J., Beck, P. S. A. A., Dubayah, R., Friedl, M. A., Samanta, S., & Houghton, R. A. (2012). Estimated carbon dioxide emissions from tropical deforestation improved by carbon-density maps. Nature Climate Change, 2(3), 182-185. https://doi.org/10.1038/nclimate1354Baker, T. R., Phillips, O. L., Malhi, Y., Almeida, S., Arroyo, L., Di Fiore, A., Erwin, T., Killeen, T. J., Laurance, S. G., Laurance, W. F., Lewis, S. L., Lloyd, J., Monteagudo, A., Neill, D. A., Patiño, S., Pitman, N. C. A., Silva, M., Natalino, J., & Vásquez Martínez, R.(2004). Variation in wood density determines spatial patterns in Amazonian forest biomass. Global Change Biology, 10(5), 545-562. https://doi.org/10.1111/j.1365-2486.2004.00751.xBenayas, J. M. R., Martins, A., Nicolau, J. M., & Schulz, J. J. (2007). Abandonment of agricultural land: An overview of drivers and consequences. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 2(57), 1-14. https://doi.org/10.1079/PAVSNNR20072057Berenguer, E., Ferreira, J., Gardner, T. A., Aragão, L. E. O. C., De Camargo, P. B., Cerri, C. E., Durigan, M., De Oliveira, R. C., Vieira, I. C. G., & Barlow, J. (2014). A large-scale field assessment of carbon stocks in human-modified tropical forests. Global Change Biology, 20(12), 3713-3726. https://doi.org/10.1111/gcb.12627Bihn, J. H., Gebauer, G., & Brandl, R. (2010). Loss of functional diversity of ant assemblages in secondary tropical forests. Ecology, 91(3), 782-792. https://doi.org/10.1890/08-1276.1Bonn Challenge. (2011). Bonn Challenge. https://www.bonnchallenge.orgBrienen, R. J. W., Phillips, O. L., Feldpausch, T. R., Gloor, E., Baker, T. R., Lloyd, J., Lopez-Gonzalez, G., Monteagudo-Mendoza, A., Malhi, Y., Lewis, S. L., Vásquez Martinez, R., Alexiades, M., Álvarez Dávila, E., Alvarez-Loayza, P., Andrade, A., Aragão, L. E. O. C., Araujo-Murakami, A., Arets, E. J. M. M., Arroyo, L., … Zagt, R. J. (2015). Long-term decline of the Amazon carbon sink. Nature, 519(7543), 344-348. https://doi.org/10.1038/nature14283Bullock, E. L., Woodcock, C. E., Souza, C., & Olofsson, P. (2020). Satellite-based estimates reveal widespread forest degradation in the Amazon. Global Change Biology, 26(5), 2956-2969. https://doi.org/10.1111/gcb.15029Caughlin, T. T., Elliott, S., & Lichstein, J. W. (2016). When does seed limitation matter for scaling up reforestation from patches to landscapes? Ecological Applications, 26(8), 2439-2450. https://doi.org/10.1002/eap.1410Chave, J., Piponiot, C., Maréchaux, I., Foresta, H., Larpin, D., Fischer, F. J., Derroire, G., Vincent, G., & Hérault, B. (2020). Slow rate of secondary forest carbon accumulation in the Guianas compared with the rest of the Neotropics. Ecological Applications, 30(1), https://doi.org/10.1002/eap.2004Chave, J., Réjou-Méchain, M., Búrquez, A., Chidumayo, E., Colgan, M. S., Delitti, W. B. C., Duque, A., Eid, T., Fearnside, P. M., Goodman, R. C., Henry, M., Martínez-Yrízar, A., Mugasha, W. A., Muller-Landau, H. C., Mencuccini, M., Nelson, B. W., Ngomanda, A., Nogueira, E. M., Ortiz-Malavassi, E., … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20(10), 3177-3190. https://doi.org/10.1111/gcb.12629Chazdon, R. L. (2003). Tropical forest recovery: legacies of human impact and natural disturbances. Perspectives in Plant Ecology Evolution and Systematics, 6(December 2003), 51-71. https://doi.org/10.1078/1433-8319-00042Chazdon, R. L. (2014). Second growth: The promise of tropical forest regeneration in an age of deforestation. University of Chicago Press. https://books.google.co.uk/books?hl=en&lr=&id=EYhFAwAAQBAJ&oi=fnd&pg=PR7&dq=Second+Growth:+The+Promise+of+Tropical+Forest+Regeneration+in+an+Age+of+Deforestation&ots=7OPBsqIGk9&sig=G-l2JkIVx6756ZMWzipi5h1JylE#v=onepage&q=SecondGrowth%3AThePromiseChazdon, R. L., Broadbent, E. N., Rozendaal, D. M. A., Bongers, F., Zambrano, A. M. A., Aide, T. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Craven, D., Almeida-Cortez, J. S., Cabral, G. A. L., De Jong, B., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., … Poorter, L. (2016). Carbon sequestration potential of second-growth forest regeneration in the Latin American tropics. Science Advances, 2(5). https://doi.org/10.1126/sciadv.1501639Crouzeilles, R., Ferreira, M. S., Chazdon, R. L., Lindenmayer, D. B., Sansevero, J. B. B., Monteiro, L., Iribarrem, A., Latawiec, A. E., & Strassburg, B. B. N. (2017). Ecological restoration success is higher for natural regeneration than for active restoration in tropical forests. Science Advances, 3(11), e1701345. https://doi.org/10.1126/sciadv.1701345de Almeida, C. A., Coutinho, A. C., Esquerdo, J. C. D. M., Adami, M., Venturieri, A., Diniz, C. G., Dessay, N., Durieux, L., & Gomes, A. R. (2016). High spatial resolution land use and land cover mapping of the Brazilian Legal Amazon in 2008 using Landsat-5/TM and MODIS data. Acta Amazonica, 46(3), 291-302. https://doi.org/10.1590/1809-4392201505504Eggleston, H. S., Buendia, L., Miwa, K., Ngara, T., & Tanabe, K. (Eds.). (2006). 2006 IPCC guidelines for national greenhouse gas inventories. IGES. https://www.ipcc-nggip.iges.or.jp/public/2006gl/pdf/4_Volume4/V4_00_Cover.pdfElias, F., Ferreira, J., Lennox, G. D., Berenguer, E., Ferreira, S., Schwartz, G., Melo, L. D. O., Reis Júnior, D. N., Nascimento, R. O., Ferreira, F. N., Espirito-Santo, F., Smith, C. C., & Barlow, J. (2020). Assessing the growth and climate sensitivity of secondary forests in highly deforested Amazonian landscapes. Ecology, 101(3), https://doi.org/10.1002/ecy.2954Esquivel-Muelbert, A., Baker, T. R., Dexter, K. G., Lewis, S. L., Brienen, R. J. W., Feldpausch, T. R., Lloyd, J., Monteagudo-Mendoza, A., Arroyo, L., Álvarez-Dávila, E., Higuchi, N., Marimon, B. S., Marimon-Junior, B. H., Silveira, M., Vilanova, E., Gloor, E., Malhi, Y., Chave, J., Barlow, J., … Phillips, O. L. (2019). Compositional response of Amazon forests to climate change. Global Change Biology, 25(1), 39-56. https://doi.org/10.1111/gcb.14413Eva, H. D., Achard, F., Beuchle, R., de Miranda, E., Carboni, S., Seliger, R., Vollmar, M., Holler, W. A., Oshiro, O. T., Arroyo, V. B., & Gallego, J. (2012). Forest cover changes in tropical south and Central America from 1990 to 2005 and related carbon emissions and removals. Remote Sensing, 4(5), 1369-1391. https://doi.org/10.3390/rs4051369Ewers, R. M., & Didham, R. K. (2005). Confounding factors in the detection of species responses to habitat fragmentation. Biological Reviews, 81(01), 117. https://doi.org/10.1017/S1464793105006949FAO. (2012). Global ecological zones for FAO forest reporting: 2010 update. http://www.fao.org/3/a-ap861e.pdfFearnside, P. M. (1990). The rate and extent of deforestation in Brazilian Amazonia. Environmental Conservation, 17(3), 213-226. https://doi.org/10.1017/S0376892900032355Fearnside, P. M. (2005). Deforestation in Brazilian Amazonia: History, rates, and consequences. Conservation Biology, 19(3), 680-688. https://doi.org/10.1111/j.1523-1739.2005.00697.xFearnside, P. M., & Guimarães, W. M. (1996). Carbon uptake by secondary forests in Brazilian Amazonia. Forest Ecology and Management, 80(1-3), 35-46. https://doi.org/10.1016/0378-1127(95)03648-2Fernandes Neto, J. G., Costa, F. R. C., Williamson, G. B., & Mesquita, R. C. G. (2019). Alternative functional trajectories along succession after different land uses in central Amazonia. Journal of Applied Ecology, 56(11), 2472-2481. https://doi.org/10.1111/1365-2664.13484Fu, R., Yin, L., Li, W., Arias, P. A., Dickinson, R. E., Huang, L., Chakraborty, S., Fernandes, K., Liebmann, B., Fisher, R., & Myneni, R. B. (2013). Increased dry-season length over southern Amazonia in recent decades and its implication for future climate projection. Proceedings of the National Academy of Sciences of the United States of America, 110(45), 18110-18115. https://doi.org/10.1073/pnas.1302584110Fujisaka, S., Bell, W., Thomas, N., Hurtado, L., & Crawford, E. (1996). Slash-and-burn agriculture, conversion to pasture, and deforestation in two Brazilian Amazon colonies. Agriculture, Ecosystems & Environment, 59(1-2), 115-130. https://doi.org/10.1016/0167-8809(96)01015-8Grace, J., Mitchard, E., & Gloor, E. (2014). Perturbations in the carbon budget of the tropics. Global Change Biology, 20(10), 3238-3255. https://doi.org/10.1111/gcb.12600Grassi, G., House, J., Dentener, F., Federici, S., den Elzen, M., & Penman, J. (2017). The key role of forests in meeting climate targets requires science for credible mitigation. Nature Climate Change, 7(3), 220-226. https://doi.org/10.1038/nclimate3227Gren, I.-M., & Aklilu, A. Z. (2016). Policy design for forest carbon sequestration: A review of the literature. Forest Policy and Economics, 70, 128-136. https://doi.org/10.1016/J.FORPOL.2016.06.008Griscom, B. W., Adams, J., Ellis, P. W., Houghton, R. A., Lomax, G., Miteva, D. A., Schlesinger, W. H., Shoch, D., Siikamäki, J. V., Smith, P., Woodbury, P., Zganjar, C., Blackman, A., Campari, J., Conant, R. T., Delgado, C., Elias, P., Gopalakrishna, T., Hamsik, M. R., … Fargione, J. (2017). Natural climate solutions. Proceedings of the National Academy of Sciences of the United States of America, 114(44), 11645-11650. https://doi.org/10.1073/pnas.1710465114Guariguata, M. R., & Ostertag, R. (2001). Neotropical secondary forest succession: Changes in structural and functional characteristics. Forest Ecology and Management, 148(1-3), 185-206. https://doi.org/10.1016/S0378-1127(00)00535-1Hansen, M. C., Potapov, P. V., Moore, R., Hancher, M., Turubanova, S. A., Tyukavina, A., Thau, D., Stehman, S. V., Goetz, S. J., Loveland, T. R., Kommareddy, A., Egorov, A., Chini, L., Justice, C. O., & Townshend, J. R. G. (2013). High-resolution global maps of 21st-century forest cover change. Science, 342(6160), 850-853. https://doi.org/10.1126/science.1244693Harris, N. L., Brown, S., Hagen, S. C., Saatchi, S. S., Petrova, S., Salas, W., Hansen, M. C., Potapov, P. V., & Lotsch, A. (2012). Baseline map of carbon emissions from deforestation in tropical regions. Science, 336(6088), 1573-1576. https://doi.org/10.1126/science.1217962Hawes, J. E., Vieira, I. C. G., Magnago, L. F. S., Berenguer, E., Ferreira, J., Aragão, L. E. O. C., Cardoso, A., Lees, A. C., Lennox, G. D., Tobias, J. A., Waldron, A., & Barlow, J. (2020). A large-scale assessment of plant dispersal mode and seed traits across human-modified Amazonian forests. Journal of Ecology, 108, 1373-1385. https://doi.org/10.1111/1365-2745.13358Hijmans, R. J., Cameron, S. E., Parra, J. L., Jones, P. G., & Jarvis, A. (2005). Very high resolution interpolated climate surfaces for global land areas. International Journal of Climatology, 25(15), 1965-1978. https://doi.org/10.1002/joc.1276Houghton, R. A., Skole, D. L., Nobre, C. A., Hackler, J. L., Lawrence, K. T., & Chomentowski, W. H. (2000). Annual fluxes of carbon from deforestation and regrowth in the Brazilian Amazon. Nature, 403(6767), 301-304. https://doi.org/10.1038/35002062Hubau, W., Lewis, S. L., Phillips, O. L., Affum-Baffoe, K., Beeckman, H., Cuní-Sanchez, A., Daniels, A. K., Ewango, C. E. N., Fauset, S., Mukinzi, J. M., Sheil, D., Sonké, B., Sullivan, M. J. P., Sunderland, T. C. H., Taedoumg, H., Thomas, S. C., White, L. J. T., Abernethy, K. A., Adu-Bredu, S., … Zemagho, L. (2020). Asynchronous carbon sink saturation in African and Amazonian tropical forests. Nature, 579(7797), 80-87. https://doi.org/10.1038/s41586-020-2035-0Initiative 20x20. (2014). https://initiative20x20.org/Jakovac, C. C., Peña-Claros, M., Kuyper, T. W., & Bongers, F. (2015). Loss of secondary-forest resilience by land-use intensification in the Amazon. Journal of Ecology, 103(1), 67-77. https://doi.org/10.1111/1365-2745.12298Lennox, G. D., Gardner, T. A., Thomson, J. R., Ferreira, J., Berenguer, E., Lees, A. C., Mac Nally, R., Aragão, L. E. O. C., Ferraz, S. F. B., Louzada, J., Moura, N. G., Oliveira, V. H. F., Pardini, R., Solar, R. R. C., Vaz-de Mello, F. Z., Vieira, I. C. G., & Barlow, J. (2018). Second rate or a second chance? Assessing biomass and biodiversity recovery in regenerating Amazonian forests. Global Change Biology, 24(12), 5680-5694. https://doi.org/10.1111/gcb.14443Loarie, S. R., Asner, G. P., & Field, C. B. (2009). Boosted carbon emissions from Amazon deforestation. Geophysical Research Letters, 36(14). https://doi.org/10.1029/2009GL037526Luyssaert, S., Inglima, I., Jung, M., Richardson, A. D., Reichstein, M., Papale, D., Piao, S. L., Schulze, E.-D.-D.-D., Wingate, L., Matteucci, G., Aragao, L., Aubinet, M., Beer, C., Bernhofer, C., Black, K. G., Bonal, D., Bonnefond, J.-M.-M.-M., Chambers, J., Ciais, P., … Janssens, I. A.(2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13(12), 2509-2537. https://doi.org/10.1111/j.1365-2486.2007.01439.xMagnago, L. F. S., Magrach, A., Barlow, J., Schaefer, C. E. G. R., Laurance, W. F., Martins, S. V., & Edwards, D. P. (2017). Do fragment size and edge effects predict carbon stocks in trees and lianas in tropical forests? Functional Ecology, 31(2), 542-552. https://doi.org/10.1111/1365-2435.12752Markesteijn, L., Poorter, L., Bongers, F., Paz, H., & Sack, L. (2011). Hydraulics and life history of tropical dry forest tree species: Coordination of species’ drought and shade tolerance. New Phytologist, 191(2), 480-495. https://doi.org/10.1111/j.1469-8137.2011.03708.xMartínez-Ramos, M., Pingarroni, A., Rodríguez-Velázquez, J., Toledo-Chelala, L., Zermeño-Hernández, I., & Bongers, F. (2016). Natural forest regeneration and ecological restoration in human-modified tropical landscapes. Biotropica, 48(6), 745-757. https://doi.org/10.1111/btp.12382Morton, D. C., Defries, R. S., Randerson, J. T., Gigilo, L., Schroeder, W., & Van Der Werf, G. R. (2008). Agricultural intensification increases deforestation fire activity in Amazonia. Global Change Biology, 14(10), 2262-2275. https://doi.org/10.1111/j.1365-2486.2008.01652.xNepstad, D. C., de Carvalho, C. R., Davidson, E. A., Jipp, P. H., Lefebvre, P. A., Negreiros, G. H., da Silva, E. D., Stone, T. A., Trumbore, S. E., & Vieira, S. (1994). The role of deep roots in the hydrological and carbon cycles of Amazonian forests and pastures. Nature, 372(6507), 666-669. https://doi.org/10.1038/372666a0New York Declaration on Forests. (2014). New York Declaration on Forests. https://forestdeclaration.orgNunes, S., Oliveira, L., Siqueira, J., Morton, D. C., & Souza, C. M. (2020). Unmasking secondary vegetation dynamics in the Brazilian Amazon. Environmental Research Letters, 15(3). https://doi.org/10.1088/1748-9326/ab76dbPan, Y., Birdsey, R. A., Fang, J., Houghton, R., Kauppi, P. E., Kurz, W. A., Phillips, O. L., Shvidenko, A., Lewis, S. L., Canadell, J. G., Ciais, P., Jackson, R. B., Pacala, S. W., McGuire, A. D., Piao, S., Rautiainen, A., Sitch, S., & Hayes, D. (2011). A large and persistent carbon sink in the world’s forests. Science, 333(6045), 988-993. https://doi.org/10.1126/science.1201609Parry, L., Day, B., Amaral, S., & Peres, C. A. (2010). Drivers of rural exodus from Amazonian headwaters. Population and Environment, 32(2-3), 137-176. https://doi.org/10.1007/s11111-010-0127-8Phillips, O. L., Aragão, L. E. O. C., Lewis, S. L., Fisher, J. B., Lloyd, J., López-González, G., Malhi, Y., Monteagudo, A., Peacock, J., Quesada, C. A., van der Heijden, G., Almeida, S., Amaral, I., Arroyo, L., Aymard, G., Baker, T. R., Bánki, O., Blanc, L., Bonal, D., … Torres-Lezama, A. (2009). Drought sensitivity of the Amazon rainforest. Science, 323(5919), 1344-1347. https://doi.org/10.1126/science.1164033Poorter, L., Bongers, F., Aide, T. M., Almeyda Zambrano, A. M., Balvanera, P., Becknell, J. M., Boukili, V., Brancalion, P. H. S., Broadbent, E. N., Chazdon, R. L., Craven, D., de Almeida-Cortez, J. S., Cabral, G. A. L., de Jong, B. H. J., Denslow, J. S., Dent, D. H., DeWalt, S. J., Dupuy, J. M., Durán, S. M., … Rozendaal, D. M. A. (2016). Biomass resilience of Neotropical secondary forests. Nature, 530(7589), 211-214. https://doi.org/10.1038/nature16512Powers, J. S., Corre, M. D., Twine, T. E., & Veldkamp, E. (2011). Geographic bias of field observations of soil carbon stocks with tropical land-use changes precludes spatial extrapolation. Proceedings of the National Academy of Sciences of the United States of America, 108(15), 6318-6322. https://doi.org/10.1073/pnas.1016774108PRODES. (2020). PRODES. http://terrabrasilis.dpi.inpe.br/app/dashboard/deforestation/biomes/legal_amazon/ratesQuesada, C. A., Lloyd, J., Anderson, L. O., Fyllas, N. M., Schwarz, M., & Czimczik, C. I. (2011). Soils of Amazonia with particular reference to the RAINFOR sites. Biogeosciences, 8, 1415-1440. https://doi.org/10.5194/bg-8-1415-2011Quesada, C. A., Phillips, O. L., Schwarz, M., Czimczik, C. I., Baker, T. R., Patiño, S., Fyllas, N. M., Hodnett, M. G., Herrera, R., Almeida, S., Alvarez Dávila, E., Arneth, A., Arroyo, L., Chao, K. J., Dezzeo, N., Erwin, T., di Fiore, A., Higuchi, N., Honorio Coronado, E., … Lloyd, J. (2012). Basin-wide variations in Amazon forest structure and function are mediated by both soils and climate. Biogeosciences, 9(6), 2203-2246. https://doi.org/10.5194/bg-9-2203-2012Requena Suarez, D., Rozendaal, D. M. A., De Sy, V., Phillips, O. L., Alvarez-Dávila, E., Anderson-Teixeira, K., Araujo-Murakami, A., Arroyo, L., Baker, T. R., Bongers, F., Brienen, R. J. W., Carter, S., Cook-Patton, S. C., Feldpausch, T. R., Griscom, B. W., Harris, N., Hérault, B., Honorio Coronado, E. N., Leavitt, S. M., … Herold, M. (2019). Estimating aboveground net biomass change for tropical and subtropical forests: Refinement of IPCC default rates using forest plot data. Global Change Biology, 25(11), 3609-3624. https://doi.org/10.1111/gcb.14767Rogelj, J., Shindell, D., Jiang, K.,Fifita, S., Forster, P., Ginzburg, V., Handa, C., Kheshgi, H., Kobayashi, S., Kriegler, E., Mundaca, L., Séférian, R., & Vilariño, M. V. (2018). Mitigation pathways compatible with 1.5°C in the context of sustainable development. In V. Masson-Delmotte, P. Zhai, H. O. Pörtner, D. Roberts, J. Skea, P. R. Shukla, A. Pirani, W. Moufouma-Okia, C. Péan, R. Pidcock, S. Connors, J. B. R. Matthews, Y. Chen, X. Zhou, M. I. Gomis, E. Lonnoy, T. Maycock, M. Tignor, & T. Waterfield (Eds.), Global warming of 1.5°C. An IPCC special report on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways, in the context of strengthening the global response to the threat of climate change (93-174). IPCC.Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark map of forest carbon stocks in tropical regions across three continents. Proceedings of the National Academy of Sciences of the United States of America, 108(24), 9899-9904. https://doi.org/10.1073/pnas.1019576108Schwartz, N. B., Uriarte, M., DeFries, R., Gutierrez-Velez, V. H., & Pinedo-Vasquez, M. A. (2017). Land-use dynamics influence estimates of carbon sequestration potential in tropical second-growth forest. Environmental Research Letters, 12(7), 074023. https://doi.org/10.1088/1748-9326/aa708bSilva, M. E. S., Pereira, G., & da Rocha, R. P. (2016). Local and remote climatic impacts due to land use degradation in the Amazon “Arc of Deforestation”. Theoretical and Applied Climatology, 125(3), 609-623. https://doi.org/10.1007/s00704-015-1516-9Skole, D. L., Chomentowski, W. H., Salas, W. A., & Nobre, A. D. (1994). Physical and human dimensions of deforestation in Amazonia. BioScience, 44(5), 314-322. https://doi.org/10.2307/1312381Spracklen, D. V., Baker, J. C. A., Garcia-Carreras, L., & Marsham, J. H. (2018). The effects of tropical vegetation on rainfall. Annual Review of Environment and Resources, 43(1), 193-218. https://doi.org/10.1146/annurev-environ-102017-030136Spracklen, D. V., & Garcia-Carreras, L. (2015). The impact of Amazonian deforestation on Amazon basin rainfall. Geophysical Research Letters, 42(21), 9546-9552. https://doi.org/10.1002/2015GL066063Toledo, R. M., Perring, M. P., Verheyen, K., Martini, A. M. Z., Ferreira, M. P., & Santos, R. F. (2020). Restoring tropical forest composition is more difficult, but recovering tree-cover is faster, when neighbouring forests are young. Landscape Ecology, 35(6), 1403-1416. https://doi.org/10.1007/s10980-020-01023-7UN Decade on Restoration. (2019). https://www.decadeonrestoration.org/Uriarte, M., Schwartz, N., Powers, J. S., Marín-Spiotta, E., Liao, W., & Werden, L. K. (2016). Impacts of climate variability on tree demography in second growth tropical forests: The importance of regional context for predicting successional trajectories. Biotropica, 48(6), 780-797. https://doi.org/10.1111/btp.12380van Leeuwen, T. T., van der Werf, G. R., Hoffmann, A. A., Detmers, R. G., Rücker, G., French, N. H. F., Archibald, S., Carvalho, J. A., Cook, G. D., de Groot, W. J., Hély, C., Kasischke, E. S., Kloster, S., McCarty, J. L., Pettinari, M. L., Savadogo, P., Alvarado, E. C., Boschetti, L., Manuri, S., … Trollope, W. S. W. (2014). Biomass burning fuel consumption rates: A field measurement database. Biogeosciences Discussions, 11, 8115-8180. https://doi.org/10.5194/bgd-11-8115-2014Vera-Diaz, M. D. C., Kaufmann, R. K., Nepstad, D. C., & Schlesinger, P. (2008). An interdisciplinary model of soybean yield in the Amazon Basin: The climatic, edaphic, and economic determinants. Ecological Economics, 65(2), 420-431. https://doi.org/10.1016/J.ECOLECON.2007.07.015Wandelli, E. V., & Fearnside, P. M. (2015). Secondary vegetation in central Amazonia: Land-use history effects on aboveground biomass. Forest Ecology and Management, 347, 140-148. https://doi.org/10.1016/j.foreco.2015.03.020Wang, Y., Ziv, G., Adami, M., de Almeida, C. A., Antunes, J. F. G., Coutinho, A. C., Esquerdo, J. C. D. M., Gomes, A. R., & Galbraith, D.(2020). Upturn in secondary forest clearing buffers primary forest loss in the Brazilian Amazon. Nature Sustainability, 3(4), 290-295. https://doi.org/10.1038/s41893-019-0470-4