Even though the take-off in ski jumping is decisive, athletes only have a very limited number of training trials on the actual ski jump to practice under real ski jump conditions. Hence, various imitation jumps aiming to mimic the hill jump are performed during daily training. These imitation jumps should therefore mimic the kinematic pattern of hill jumps appropriately. This study aimed to identify imitation jumps that resemble hill jumps regarding four performance-related biomechanical criteria: maximal vertical take-off velocity, maximal knee extension velocity, maximal forward-directed angular momentum and anterior shift of the center of mass. Therefore, a three-dimensional analysis of the take-off during six different modalities of imitation jumps as well as hill jumps for validation was carried out in nine professional ski jumpers. Imitation jumps from a rolling platform show better agreement than stationary jumps and three out of the four parameters were best resembled via an imitation jump that included ski jumping boots. Thus, non-hill take-off training should be performed with complex imitation jumps to mimic the actual ski jump. Except for the vertical take-off velocity, we could identify one imitation jump type that is not statistically different to the hill. Consequently, the individual deficiencies of the athletes can be addressed and specifically trained using the appropriate imitation jump. These information about the similarity between imitation jumps and real hill jumps are highly relevant for trainers and athletes in order to effectively design their training programs.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/sms.13834 | DOI Listing |
Bioengineering (Basel)
May 2023
School of Mechanical Engineering, Northwestern Polytechnical University, Xi'an 710072, China.
Animal joint motion is a combination of rotation and translational motion, which brings high stability, high energy utilization, and other advantages. At present, the hinge joint is widely used in the legged robot. The simple motion characteristic of the hinge joint rotating around the fixed axis limits the improvement of the robot's motion performance.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2023
School of Mechanical, Electronic and Control Engineering, Beijing Jiaotong University, Beijing 100044, China.
At present, most quadruped robots can move quickly and steadily on both flat and undulating ground; however, natural environments are complex and changeable, so it is important for a quadruped robot to be able to jump over obstacles immediately. Inspired by the jumping movement of quadruped animals, we present aerial body posture adjustment laws and generate animal-like jumping trajectories for a quadruped robot. Then, the bionic reference trajectories are optimized to build a trajectory library of a variety of jumping motions based on the kinematic and dynamic constraints of the quadruped robot.
View Article and Find Full Text PDFTissue Eng Part A
June 2022
Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Leiden, The Netherlands.
Synthetically designed biomaterials strive to recapitulate and mimic the complex environment of natural systems. Using natural materials as a guide, the ability to create high-performance biomaterials that control cell fate, and support the next generation of cell- and tissue-based therapeutics, is starting to emerge. Supramolecular chemistry takes inspiration from the wealth of noncovalent interactions found in natural materials that are inherently complex, and using the skills of synthetic and polymer chemistry, recreates simple systems to imitate their features.
View Article and Find Full Text PDFFront Hum Neurosci
January 2022
Institute of Neural Engineering, Graz University of Technology, Graz, Austria.
Advantageous effects of biological motion (BM) detection, a low-perceptual mechanism that allows the rapid recognition and understanding of spatiotemporal characteristics of movement salient kinematics information, can be amplified when combined with motor imagery (MI), i.e., the mental simulation of motor acts.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!