Atomic-scale insights into electro-steric substitutional chemistry of cerium oxide.

Phys Chem Chem Phys

Department of Energy Conversion and Storage, Technical University of Denmark, Anker Engelunds Vej 411, DK-2800 Kgs. Lyngby, Denmark.

Published: October 2020

Cerium oxide (ceria, CeO2) is one of the most promising mixed ionic and electronic conducting materials. Previous atomistic analysis has widely covered the effects of substitution on oxygen vacancy migration. However, an in-depth analysis of the role of cation substitution beyond trivalent cations has rarely been explored. Here, we investigate soluble monovalent (Li+, Na+, K+, Rb+), divalent (Fe2+, Co2+, Mn2+, Mg2+, Ni2+, Zn2+, Cd2+, Ca2+, Sr2+, Ba2+), trivalent (Al3+, Fe3+, Sc3+, In3+, Lu3+, Yb3+, Y3+, Er3+, Gd3+, Eu3+, Nd3+, Pr3+, La3+) and tetravalent (Si4+, Ge4+, Ti4+, Sn4+, Hf4+, Zr4+) cation substituents. By combining classical simulations and quantum mechanical calculations, we provide an insight into defect association energies between substituent cations and oxygen vacancies as well as their effects on the diffusion mechanisms. Our simulations indicate that oxygen ionic diffusivity of subvalent cation-substituted systems follows the order Gd3+ > Ca2+ > Na+. With the same charge, a larger size mismatch with the Ce4+ cation yields a lower oxygen ionic diffusivity, i.e., Na+ > K+, Ca2+ > Ni2+, Gd3+ > Al3+. Based on these trends, we identify species that could tune the oxygen ionic diffusivity: we estimate that the optimum oxygen vacancy concentration for achieving fast oxygen ionic transport is ≈2.5% for GdxCe1-xO2-x/2, CaxCe1-xO2-x and NaxCe1-xO2-3x/2 at 800 K. Remarkably, such a concentration is not constant and shifts gradually to higher values as the temperature is increased. We find that co-substitutions can enhance the impact of the single substitutions beyond that expected by their simple addition. Furthermore, we identify preferential oxygen ion migration pathways, which illustrate the electro-steric effects of substituent cations in determining the energy barrier of oxygen ion migration. Such fundamental insights into the factors that govern the oxygen diffusion coefficient and migration energy would enable design criteria to be defined for tuning the ionic properties of the material, e.g., by co-substitutions.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0cp03298kDOI Listing

Publication Analysis

Top Keywords

oxygen ionic
16
ionic diffusivity
12
oxygen
10
cerium oxide
8
oxygen vacancy
8
substituent cations
8
oxygen ion
8
ion migration
8
ionic
6
atomic-scale insights
4

Similar Publications

There is limited research on the influence of environmental variables on the interactions of biodegradable microplastics with chromium. This study reports the results of adsorption experiments with Cr and poly(lactic acid) (PLA) in synthetic aqueous solutions. It addresses the influence of the initial oxidation state, Cr(III) or Cr(VI), the effects of UV irradiation and the presence of organic matter.

View Article and Find Full Text PDF

Effect of the Electrolyte on the Oxygen Reduction Reaction with PCN-224(Co).

ChemSusChem

January 2025

Leiden University: Universiteit Leiden, Leiden Institute of Chemistry, Einsteinweg 55, Room number EE4.19, 2333 CC, Leiden, NETHERLANDS, KINGDOM OF THE.

Electrocatalysis in metal-organic frameworks is an interplay between the diffusion of charges, the intrinsic catalytic rate, and the mass-transport of reactants through the pores. Here a systematic study is carried out to investigate the role of the electrolyte nature and concentration on the oxygen reduction reaction (ORR) with the PCN-224(Co) MOF in aqueous electrolyte. It was found that the ORR activity is slightly influenced by the nature of the ions in solution, providing that the ionic strength is high enough to minimize the resistivity during the measurement.

View Article and Find Full Text PDF

Melatonin (MT), an indole compound, can boost plant growth under abiotic stress conditions. This experiment aims to elucidate the synergistic effect of MT and ascorbic acid (AsA) in mitigating salinity stress by assessing the photosynthetic and antioxidant capacity of the maize inbred lines H123 and W961. The results indicated that exogenous MT and AsA significantly improved photosynthetic efficiency and biomass of maize under salinity stress.

View Article and Find Full Text PDF

The goal of this research is to develop and characterize low-cost NHI doped polyvinyl alcohol (PVA)-4-ethyl-4-methylmorpholiniumbromide (ionic liquid) anion exchange membranes (AEM) and its application for membrane cathode assembly. Physical characterization like FTIR, POM, and XRD notified the functional groups, basic structure, and amorphosity of the produced membrane, and it was employed in single-chambered microbial fuel cells (sMFCs) as a separator. The membranes in terms of oxygen diffusion, proton conductivity, and ion exchange capabilities were evaluated.

View Article and Find Full Text PDF

Electrocatalytic methane conversion via in-situ generated superoxide radicals in an aprotic ionic liquid.

J Colloid Interface Sci

January 2025

Institute of Applied Electrochemistry, College of Chemistry, Beijing University of Chemical Technology, Beijing 100029 PR China. Electronic address:

The electrochemical activation and partial oxidation of methane are highly attractive to enable the direct conversion in a sustainable and decentralized way. Herein, we report an electrochemical system in a non-diaphragm electrochemical bath to convert CH to CHOH and CHCHOH at room temperature, in which VO·HO as the anodic catalyst to activate CH and an aprotic ionic liquid [BMIM]BF as supporting electrolyte to control superoxide radicals (O) as the main active oxygen species generated on cathode. As a result, methanol and ethanol were identified as the liquid products, and the superior methanol Faraday efficiency (FE) of 32.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!