Purpose: Optic pathway gliomas (OPG) are low-grade pilocytic astrocytomas accounting for 3-5% of pediatric intracranial tumors. Accurate and quantitative follow-up of OPG using magnetic resonance imaging (MRI) is crucial for therapeutic decision making, yet is challenging due to the complex shape and heterogeneous tissue pattern which characterizes these tumors. The aim of this study was to implement automatic methods for segmentation and classification of OPG and its components, based on MRI.

Methods: A total of 202 MRI scans from 29 patients with chiasmatic OPG scanned longitudinally were retrospectively collected and included in this study. Data included T and post-contrast T weighted images. The entire tumor volume and its components were manually annotated by a senior neuro-radiologist, and inter- and intra-rater variability of the entire tumor volume was assessed in a subset of scans. Automatic tumor segmentation was performed using deep-learning method with U-Net+ResNet architecture. A fivefold cross-validation scheme was used to evaluate the automatic results relative to manual segmentation. Voxel-based classification of the tumor into enhanced, non-enhanced, and cystic components was performed using fuzzy c-means clustering.

Results: The results of the automatic tumor segmentation were: mean dice score = 0.736 ± 0.025, precision = 0.918 ± 0.014, and recall = 0.635 ± 0.039 for the validation data, and dice score = 0.761 ± 0.011, precision = 0.794 ± 0.028, and recall = 0.742 ± 0.012 for the test data. The accuracy of the voxel-based classification of tumor components was 0.94, with precision = 0.89, 0.97, and 0.85, and recall = 1.00, 0.79, and 0.94 for the non-enhanced, enhanced, and cystic components, respectively.

Conclusion: This study presents methods for automatic segmentation of chiasmatic OPG tumors and classification into the different components of the tumor, based on conventional MRI. Automatic quantitative longitudinal assessment of these tumors may improve radiological monitoring, facilitate early detection of disease progression and optimize therapy management.

Download full-text PDF

Source
http://dx.doi.org/10.1002/mp.14489DOI Listing

Publication Analysis

Top Keywords

automatic segmentation
8
segmentation classification
8
optic pathway
8
pathway gliomas
8
fuzzy c-means
8
chiasmatic opg
8
entire tumor
8
tumor volume
8
automatic tumor
8
tumor segmentation
8

Similar Publications

Automated stenosis estimation of coronary angiographies using end-to-end learning.

Int J Cardiovasc Imaging

January 2025

Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.

The initial evaluation of stenosis during coronary angiography is typically performed by visual assessment. Visual assessment has limited accuracy compared to fractional flow reserve and quantitative coronary angiography, which are more time-consuming and costly. Applying deep learning might yield a faster and more accurate stenosis assessment.

View Article and Find Full Text PDF

G-SET-DCL: a guided sequential episodic training with dual contrastive learning approach for colon segmentation.

Int J Comput Assist Radiol Surg

January 2025

Computer Vision and Image Processing Lab., UofL, Louisville, KY, 40292, USA.

Purpose: This article introduces a novel deep learning approach to substantially improve the accuracy of colon segmentation even with limited data annotation, which enhances the overall effectiveness of the CT colonography pipeline in clinical settings.

Methods: The proposed approach integrates 3D contextual information via guided sequential episodic training in which a query CT slice is segmented by exploiting its previous labeled CT slice (i.e.

View Article and Find Full Text PDF

Purpose: This study aims to develop a deep-learning-based software capable of detecting and differentiating microaneurysms (MAs) as hyporeflective or hyperreflective on structural optical coherence tomography (OCT) images in patients with non-proliferative diabetic retinopathy (NPDR).

Methods: A retrospective cohort of 249 patients (498 eyes) diagnosed with NPDR was analysed. Structural OCT scans were obtained using the Heidelberg Spectralis HRA + OCT device.

View Article and Find Full Text PDF

Primary lateral sclerosis (PLS) is a motor neuron disease (MND) which mainly affects upper motor neurons. Within the MND spectrum, PLS is much more slowly progressive than amyotrophic laterals sclerosis (ALS). `Classical` ALS is characterized by catabolism and abnormal energy metabolism preceding onset of motor symptoms, and previous studies indicated that the disease progression of ALS involves hypothalamic atrophy.

View Article and Find Full Text PDF

We developed an AI system capable of automatically classifying anterior eye images as either normal or indicative of corneal diseases. This study aims to investigate the influence of AI's misleading guidance on ophthalmologists' responses. This cross-sectional study included 30 cases each of infectious and immunological keratitis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!