We present an original method for simulating realistic fetal neurosonography images specifically generating third-trimester pregnancy ultrasound images from second-trimester images. Our method was developed using unpaired data, as pairwise data were not available. We also report original insights on the general appearance differences between second- and third-trimester fetal head transventricular (TV) plane images. We design a cycle-consistent adversarial network (Cycle-GAN) to simulate visually realistic third-trimester images from unpaired second- and third-trimester ultrasound images. Simulation realism is evaluated qualitatively by experienced sonographers who blindly graded real and simulated images. A quantitative evaluation is also performed whereby a validated deep-learning-based image recognition algorithm (ScanNav) acts as the expert reference to allow hundreds of real and simulated images to be automatically analyzed and compared efficiently. Qualitative evaluation shows that the human expert cannot tell the difference between real and simulated third-trimester scan images. 84.2% of the simulated third-trimester images could not be distinguished from the real third-trimester images. As a quantitative baseline, on 3000 images, the visibility drop of the choroid, CSP, and mid-line falx between real second- and real third-trimester scans was computed by ScanNav and found to be 72.5%, 61.5%, and 67%, respectively. The visibility drop of the same structures between real second-trimester and simulated third-trimester was found to be 77.5%, 57.7%, and 56.2%, respectively. Therefore, the real and simulated third-trimester images were consider to be visually similar to each other. Our evaluation also shows that the third-trimester simulation of a conventional GAN is much easier to distinguish, and the visibility drop of the structures is smaller than our proposed method. The results confirm that it is possible to simulate realistic third-trimester images from second-trimester images using a modified Cycle-GAN, which may be useful for deep learning researchers with a restricted availability of third-trimester scans but with access to ample second trimester images. We also show convincing simulation improvements, both qualitatively and quantitatively, using the Cycle-GAN method compared with a conventional GAN. Finally, the use of a machine learning-based reference (in the case ScanNav) for large-scale quantitative image analysis evaluation is also a first to our knowledge.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7492851PMC
http://dx.doi.org/10.1117/1.JMI.7.5.057001DOI Listing

Publication Analysis

Top Keywords

third-trimester images
20
images
17
real simulated
16
simulated third-trimester
16
third-trimester
13
visibility drop
12
simulating realistic
8
realistic fetal
8
fetal neurosonography
8
neurosonography images
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!