Background: Previous study revealed that high glucose (HG) induced endothelial cell (EC) damage via endothelial-to-mesenchymal transition (EndMT). Recent studies suggested the role of Ephrin B2 in mediate ECs damage. However, the underlying mechanism remains unclear. The aim of the present study was to investigate whether Ephrin B2 mediates HG-induced EndMT in human aortic ECs (HAECs) and to determine the possible downstream signaling effector.

Methods: Primary HAECs were exposed to normal glucose (NG, 5.5 mM), HG (30 mM) and HG+Ephrin B2 small interfering RNA (siRNA), respectively. The pathological changes were investigated by light microscope and confocal microscopy. To study the effects of focal adhesion kinase (FAK) activation on Ephrin B2 in HAECs, cells were incubated with FAK siRNA in HG group. The expression of EndMT-related markers (CD31 and FSP1), Ephrin B2 and FAK were detected by qRT-PCR and western blot.

Results: The results showed that HG significantly inhibited the expression of CD31 and increased FSP1 compared with NG group. Moreover, Ephrin B2 was increased after HG incubation. Ephrin B2 siRNA attenuated HG-induced expression of EndMT-related markers. Furthermore, HG increased the expression of FAK and phosphorylated FAK (pho-FAK) in HAECs. In contrast, blocking Ephrin B2 could partially attenuate HG-induced FAK activation. And FAK siRNA further inhibited the EndMT-related markers in HAECs treated with HG.

Conclusions: HG-induced EndMT in HAECs might be partially mediated by Ephrin B2 and the downstream FAK pathway.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7487366PMC
http://dx.doi.org/10.21037/cdt-20-299DOI Listing

Publication Analysis

Top Keywords

endmt-related markers
12
ephrin
9
ephrin mediates
8
high glucose
8
glucose induced
8
endothelial-to-mesenchymal transition
8
human aortic
8
hg-induced endmt
8
fak
8
fak activation
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!