Parkinson's disease (PD) is a neurodegenerative disease characterized clinically by the triad of resting tremor, rigidity, and bradykinesia. Although PD is primarily known for motor disturbance, 98.6% of patients experience one or more non-motor symptoms at all stages of the disease. Dermatological disorders are discussed as common non-motor associations of PD since the 20th century. Many studies have shown that patients of PD are predisposed to skin disorders. This article is a traditional review done to analyze the association between PD and its dermatological manifestations. We did a literature search using six keywords in the PubMed database and took the relevant articles published in the last 10 years. We reviewed more than 100 articles, which also included animal studies. On meticulous review, we observed an increased incidence of certain skin disorders like seborrheic dermatitis, bullous pemphigoid, rosacea, and melanoma in patients of PD. These disorders share either common risk factors or underlying mechanisms revolving around genetics, immunology, inflammation, and pathophysiology of PD, but the exact causation yet seems obscured. We believe that this opens a horizon for more research in the link between the skin and nervous system. We also emphasize that the dermatologists, neurologists and general physicians should address the cutaneous disorders in PD timely, educate their patients, help them lessen the psychosocial distress, and improve their quality of life.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7505647 | PMC |
http://dx.doi.org/10.7759/cureus.9933 | DOI Listing |
J Integr Neurosci
December 2024
Federal State Budgetary Educational Institution, Institute of Theoretical and Experimental Biophysics, 142290 Pushchino, Russia.
Background: Long-term use of levodopa, a metabolic precursor of dopamine (DA) for alleviation of motor symptoms in Parkinson's disease (PD), can cause a serious side effect known as levodopa-induced dyskinesia (LID). With the development of LID, high-frequency gamma oscillations (~100 Hz) are registered in the motor cortex (MCx) in patients with PD and rats with experimental PD. Studying alterations in the activity within major components of motor networks during transition from levodopa-off state to dyskinesia can provide useful information about their contribution to the development of abnormal gamma oscillations and LID.
View Article and Find Full Text PDF3 Biotech
January 2025
Manipal Centre for Biotherapeutics Research, Manipal Academy of Higher Education, Karnataka Manipal, 576 104 India.
The microbiota-gut-brain axis is a pivotal medium of crosstalk between the central nervous system (CNS) and the gastrointestinal tract. It is an intricate network of synergistic molecular pathways that exert their effects far beyond their local vicinity and even affect the systemic functioning of the body. The current review explores the involvement of the gut-brain axis (GBA) in the functioning of the nervous system, with a special emphasis on the neurodegeneration, cognitive decline, and neuroinflammation that occur in Alzheimer's disease (AD) and Parkinson's disease (PD).
View Article and Find Full Text PDFNetw Neurosci
December 2024
Institute of Neurosciences and Medicine - Brain and Behaviour (INM-7), Research Centre Jülich, 52425 Jülich, Germany.
The neurodegenerative progression of Parkinson's disease affects brain structure and function and, concomitantly, alters the topological properties of brain networks. The network alteration accompanied by motor impairment and the duration of the disease has not yet been clearly demonstrated in the disease progression. In this study, we aim to resolve this problem with a modeling approach using the reduced Jansen-Rit model applied to large-scale brain networks derived from cross-sectional MRI data.
View Article and Find Full Text PDFNetw Neurosci
December 2024
Science for Life Laboratory, Department of Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden.
Striatum, the input stage of the basal ganglia, is important for sensory-motor integration, initiation and selection of behavior, as well as reward learning. Striatum receives glutamatergic inputs from mainly cortex and thalamus. In rodents, the striatal projection neurons (SPNs), giving rise to the direct and the indirect pathway (dSPNs and iSPNs, respectively), account for 95% of the neurons, and the remaining 5% are GABAergic and cholinergic interneurons.
View Article and Find Full Text PDFTurk J Med Sci
December 2024
Neurology Department, Gülhane Training and Research Hospital, University of Health Sciences, Ankara, Turkiye.
Neurological disorders encompass a complex and heterogeneous spectrum of diseases affecting the brain, spinal cord, and peripheral nervous system, each presenting unique challenges that extend well beyond primary neurological symptoms. These disorders profoundly impact cardiovascular health, prompting an intensified exploration into the intricate interconnections between the neurological and cardiovascular systems. This review synthesizes current insights and research on cardiovascular comorbidities associated with major neurological conditions, including stroke, epilepsy, Parkinson's disease, multiple sclerosis, and Alzheimer's disease.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!