ATP-binding cassette transporters A1 (ABCA1) and G1 (ABCG1) play a vital role in promoting cholesterol efflux. Although, the dysregulation of these transporters was attributed as one of the mechanisms of atherogenesis, what renders their dysfunction is not well explored. Previously, we have reported that thrombin without having any effect on ABCG1 levels depletes ABCA1 levels affecting cholesterol efflux. In this study, we explored the mechanisms underlying thrombin-induced depletion of ABCA1 levels both in macrophages and smooth muscle cells. Under normal physiological conditions, COP9 signalosome subunit 3 (CSN3) was found to exist in complex with ABCA1 and in the presence of proatherogenic stimulants such as thrombin, ABCA1 was phosphorylated and dissociated from CSN3, leading to its degradation. Forced expression of CSN3 inhibited thrombin-induced ABCA1 ubiquitination and degradation, restored cholesterol efflux and suppressed foam cell formation. In Western diet (WD)-fed ApoE mice, CSN3 was also disassociated from ABCA1 otherwise remained as a complex in Chow diet (CD)-fed ApoE mice. Interestingly, depletion of CSN3 levels in WD-fed ApoE mice significantly lowered ABCA1 levels, inhibited cholesterol efflux and intensified foam cell formation exacerbating the lipid laden atherosclerotic plaque formation. Mechanistic studies have revealed the involvement of Par1-Gα-Pyk2-Gab1-PKCθ signaling in triggering phosphorylation of ABCA1 and its disassociation from CSN3 curtailing cholesterol efflux and amplifying foam cell formation. In addition, although both CSN3 and ABCA1 were found to be colocalized in human non-lesion coronary arteries, their levels were decreased as well as dissociated from each other in advanced atherosclerotic lesions. Together, these observations reveal for the first time an anti-atherogenic role of CSN3 and hence, designing therapeutic drugs protecting its interactions with ABCA1 could be beneficial against atherosclerosis.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7862243PMC
http://dx.doi.org/10.1038/s41418-020-00623-9DOI Listing

Publication Analysis

Top Keywords

cholesterol efflux
20
foam cell
16
cell formation
16
abca1
12
abca1 levels
12
apoe mice
12
cop9 signalosome
8
signalosome subunit
8
csn3
8
wd-fed apoe
8

Similar Publications

Fatty acids from cheese stimulate cholesterol efflux by ABC transporters.

Biosci Biotechnol Biochem

December 2024

R&D Division, Meiji Co., Ltd., 1-29-1 Nanakuni, Hachioji, Tokyo 192-0919, Japan.

It is essential to remove cholesterol from the body to suppress atherosclerosis progression. ABCA1 and ABCG1 transport cholesterol in peripheral cells including macrophages and function in the formation of high-density lipoprotein (HDL). ABCG5/ABCG8 functions in the efflux of cholesterol from the body.

View Article and Find Full Text PDF

Protein Kinase C - epsilon (PKCɛ) is involved in diverse cellular processes such as migration, growth, differentiation, and survival. Public geneset analysis of human atherosclerotic plaque tissue revealed that PKCɛ expression is inversely correlated with plaque size and vulnerability. Similarly, peritoneal macrophages (MØ) from hypercholesterolemic mice have significantly lower PKCɛ expression.

View Article and Find Full Text PDF

Background: Many members of the oxysterol-binding protein-related protein (ORP) family have been characterized in detail over the past decades, but the lipid transport and other functions of ORP7 still remain elusive. What is known about ORP7 points toward an endoplasmic reticulum and plasma membrane-localized protein, which also interacts with GABA type A receptor-associated protein like 2 (GABARAPL2) and unlipidated Microtubule-associated proteins 1A/1B light chain 3B (LC3B), suggesting a further autophagosomal/lysosomal association. Functional roles of ORP7 have been suggested in cholesterol efflux, hypercholesterolemia, and macroautophagy.

View Article and Find Full Text PDF

Malaria, a devastating parasitic infection, is the leading cause of death in many developing countries. Unfortunately, the most deadliest causative agent of malaria, , has developed resistance to nearly all currently available antimalarial drugs. The Niemann-Pick type C1-related (PfNCR1) transporter has been identified as a druggable target, but its structure and detailed molecular mechanism are not yet available.

View Article and Find Full Text PDF

Atherosclerosis (AS) is a lipid-driven chronic inflammatory disease characterized by the presence of numerous proinflammatory cytokines, massive reactive oxygen species (ROS) and excess lipids, which together result in an overall inflammatory positive feedback loop in the plaque focus. Due to its excellent enzyme-like activity in ROS scavenging and inflammation inhibition, as well as its photothermal effects in the lipid efflux ability of foam cells, Prussian blue (PB) has greater potential in preventing inflammatory factor loops for enhanced treatment of AS than traditional nanozymes. In this study, the multifunctional nanozyme BSA@PB/Cur was synthesized by self-assembly of bovine serum albumin (BSA) with PB and further encapsulation of the anti-inflammatory drug curcumin (Cur).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!