Alzheimer's disease (AD) is a chronic neurodegenerative disorder and the leading cause of dementia, but therapeutic treatment options are limited. Taurine has been reported to have neuroprotective properties against dementia, including AD. The present study aimed to investigate the treatment effect of taurine in AD mice by functional molecular imaging. To elucidate glutamate alterations by taurine, taurine was administered to 5xFAD transgenic mice from 2 months of age, known to apear amyloid deposition. Then, we performed glutamate positron emission tomography (PET) imaging studies for three groups (wild-type, AD, and taurine-treated AD, n = 5 in each group). As a result, brain uptake in the taurine-treated AD group was 31-40% higher than that in the AD group (cortex: 40%, p < 0.05; striatum: 32%, p < 0.01; hippocampus: 36%, p < 0.01; thalamus: 31%, p > 0.05) and 3-14% lower than that in the WT group (cortex: 10%, p > 0.05; striatum: 15%, p > 0.05; hippocampus: 14%, p > 0.05; thalamus: 3%, p > 0.05). However, we did not observe differences in Aβ pathology between the taurine-treated AD and AD groups in immunohistochemistry experiments. Our results reveal that although taurine treatment did not completely recover the glutamate system, it significantly increased metabolic glutamate receptor type 5 brain uptake. Therefore, taurine has therapeutic potential against AD.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7511343 | PMC |
http://dx.doi.org/10.1038/s41598-020-72755-4 | DOI Listing |
Geroscience
January 2025
Dept. of Bioinformatics, Semmelweis University, 1094, Budapest, Hungary.
Age-related cognitive impairment and dementia pose a significant global health, social, and economic challenge. While Alzheimer's disease (AD) has historically been viewed as the leading cause of dementia, recent evidence reveals the considerable impact of vascular cognitive impairment and dementia (VCID), which now accounts for nearly half of all dementia cases. The Mediterranean diet-characterized by high consumption of fruits, vegetables, whole grains, fish, and olive oil-has been widely recognized for its cardiovascular benefits and may also reduce the risk of cognitive decline and dementia.
View Article and Find Full Text PDFJ Neuroimmune Pharmacol
January 2025
Pharmacy Department, Baotou Central Hospital, Baotou, 014040, Inner Mongolia, China.
Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.
View Article and Find Full Text PDFClin Neuropsychol
January 2025
Department of Neurosurgery, Medical College of Wisconsin, Milwaukee, WI, USA.
The long-term health of former athletes with a history of multiple concussions and/or repetitive head impact (RHI) exposure has been of growing interest among the public. The true proportion of dementia cases attributable to neurotrauma and the neurobehavioral profile/sequelae of multiple concussion and RHI exposure among athletes has been difficult to determine. Across three exposure paradigms (i.
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Chemistry, Faculty of Science and Technology, Rajamangala University of Technology Thanyaburi, Thailand.
Background: Edible insects are used for consumption and traditional medicine due to their rich bioactive compounds. This study examined the bioactive compounds and inhibitory effects of crude extracts from Bombyx mori and Omphisa fuscidentalis on α-glucosidase, α-amylase, acetylcholinesterase (AChE), and tyrosinase. Fatty acids, including n-hexadecanoic acid and oleic acid, were identified in the extracts and evaluated for their inhibitory potential against the enzymes in vitro and in silico.
View Article and Find Full Text PDFJ Comput Chem
January 2025
Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, New South Wales, Australia.
Phosphodiesterase 5 (PDE5) inhibitors have shown great potential in treating Alzheimer's disease by improving memory and cognitive function. In this study, we evaluated fluspirilene, a drug commonly used to treat schizophrenia, as a potential PDE5 inhibitor using computational methods. Molecular docking revealed that fluspirilene binds strongly to PDE5, supported by hydrophobic and aromatic interactions.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!